K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 9 2017

ta có \(P=a^3+b^3+c^3+3abc=\left(a+b+c\right)^3-3\left(a+b\right)\left(b+c\right)\left(c+a\right)+3abc\)

              \(=1-3\left(1-a\right)\left(1-b\right)\left(1-a\right)+3abc\)

nhân tung ra và rút gọn thì \(P=1-3\left(ab+bc+ca\right)+6abc=1-3\left(ab+bc+ca-2abc\right)\)

vì \(b+c>a\Rightarrow a+b+c\ge2a\Rightarrow2a-1< 0\)

tương tự với mấy cái kia nhân vaò và ta có 

\(\left(2a-1\right)\left(2b-1\right)\left(2c-1\right)< 0\)\(\Leftrightarrow8abc-4\left(ab+bc+ca\right)+2\left(a+b+c\right)-1< 0\)

=> \(1< 4\left(ab+bc+ca\right)-8abc\Rightarrow\frac{1}{4}< \left(ab+bc+ca-2abc\right)\)

=> \(\Rightarrow-3\left(ab+bc+ca-2abc\right)< -\frac{3}{4}\)

=> \(1-3\left(ab+bc+ca-2abc\right)< \frac{1}{4}\) => p<1/4

B) ta có \(\left(a+b-c\right)\left(a-b+c\right)\left(b+c-a\right)=\sqrt{\left[b^2-\left(a-c\right)^2\right]\left[a^2-\left(b-c\right)^2\right]\left[c^2-\left(a-b\right)^2\right]}< abc\)

=> \(\left(1-2a\right)\left(1-2b\right)\left(1-2c\right)< abc\)

=> \(4\left(ab+bc+ca-2abc\right)\le abc+1\le\left(\frac{a+b+c}{3}\right)^3+1=\frac{28}{27}\)

=> \(ab+bc+ca-abc\le\frac{7}{27}\)

=> \(P\ge1-3.\frac{7}{27}=\frac{2}{9}\)

26 tháng 9 2017

Ta có a+b+c=1;a;b;c>0 nên

P=a3+b3+c3+3abc

=(a+b+c)3-3(a+b)(b+c)(c+a)+3abc

=1-3abc-3∑ab(a+b)

=1-3abc-3∑ab(1-c)

=1-3(ab+bc+ca)+6abc

Vì a;b;c là 3 cạnh của một tam giác nên

b+c>a=>a+b+c>2a=>2a<1. Tương tự 2b<1;2c<1

Nên (2a-1)(2b-1)(2c-1)<0

<=> 8abc-4(ab+bc+ca)+2(a+b+c)-1<0

=>4[ab+bc+ca-2abc]>1

=>P<1/4

Ta có:

(a+b-c)(b+c-a)(c+a-b)=

\(\sqrt{\left[b^2-\left(a-c\right)^2\right].\left[a^2-\left(b-c\right)^2\right].\left[c^2-\left(a-b\right)^2\right]}\)≤abc

=>(1-2a)(1-2b)(1-2c)≤abc

=>4[ab+bc+ca-2abc]≤abc+1≤\(\left(\frac{a+b+c}{3}\right)^3+1=\frac{28}{27}\)

=>P≥1-3.\(\frac{28}{4.27}=\frac{2}{9}\)

Dấu = xảy ra khi a=b=c=\(\frac{1}{3}\)

trời mãi ms xong

26 tháng 9 2017

Cho là độ dài các cạnh của tam giác có chu vi bằng 1. Chứng minh: - K2PI – TOÁN THPT | Chia sẻ Tài liệu, đề thi, hỗ trợ giải toán

28 tháng 12 2016

2/

  • Chứng minh \(\sqrt{2}\left(a+b+c\right)\le\sqrt{a^2+b^2}+\sqrt{b^2+c^2}+\sqrt{c^2+a^2}\) 

Ta có \(\sqrt{2}.\left(\sqrt{a^2+b^2}+\sqrt{b^2+c^2}+\sqrt{c^2+a^2}\right)\ge2\left(a+b+c\right)\)

\(\Leftrightarrow\sqrt{2}\left(a+b+c\right)\le\sqrt{a^2+b^2}+\sqrt{b^2+c^2}+\sqrt{c^2+a^2}\)

  • Chứng minh \(\sqrt{a^2+b^2}+\sqrt{b^2+c^2}+\sqrt{c^2+a^2}< \sqrt{3}\left(a+b+c\right)\)

Bạn chứng minh bằng biến đổi tương đương

28 tháng 12 2016

1/ \(ab+bc+ac=3abc\Leftrightarrow\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=3\)

Ta có \(\frac{1}{a^2+1}+\frac{1}{b^2+1}+\frac{1}{c^2+1}\le\frac{1}{2a}+\frac{1}{2b}+\frac{1}{2c}=\frac{1}{2}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)=\frac{3}{2}\)

Vậy min P = 3/2 tại a = b = c = 1

2 tháng 11 2018

\(VT=\frac{b+c-a}{2}.\frac{a+c-b}{2}.\frac{a+b-c}{2}=\sqrt{\frac{\left(b+c-a\right)^2\left(a+c-b\right)^2\left(a+b-c\right)^2}{64}}\)

\(VT=\frac{\sqrt{\left(b+c-a\right)\left(a+c-b\right)}.\sqrt{\left(a+c-b\right)\left(a+b-c\right)}.\sqrt{\left(a+b-c\right)\left(b+c-a\right)}}{8}\)

Ta có : 

\(\sqrt{\left(b+c-a\right)\left(a+c-b\right)}\le\frac{b+c-a+a+c-b}{2}=\frac{2c}{2}=c\)

\(\sqrt{\left(a+c-b\right)\left(a+b-c\right)}\le\frac{a+c-b+a+b-c}{2}=\frac{2a}{2}=a\)

\(\sqrt{\left(a+b-c\right)\left(b+c-a\right)}\le\frac{a+b-c+b+c-a}{2}=\frac{2b}{2}=b\)

\(\Rightarrow\)\(VT\le\frac{abc}{8}\) ( đpcm ) 

Chúc bạn học tốt ~ 

29 tháng 5 2018

4. Ta có: \(a+b+c=6abc\)

\(\Rightarrow\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}=6\)

Đặt \(\frac{1}{a}=x;\frac{1}{b}=y;\frac{1}{c}=z\)

\(\Rightarrow xy+yz+zx=6\)

Lại có: \(\frac{bc}{a^3\left(c+2b\right)}=\frac{1}{a^3\frac{c+2b}{bc}}=\frac{\frac{1}{a^3}}{\frac{1}{b}+\frac{2}{c}}=\frac{x^3}{y+2z}\)

Tương tự suy ra: 

\(S=\frac{x^3}{y+2z}+\frac{y^3}{z+2x}+\frac{z^3}{x+2y}\)

\(=\frac{x^4}{xy+2zx}+\frac{y^4}{yz+2xy}+\frac{z^4}{zx+2yz}\)

\(\ge\frac{\left(x^2+y^2+z^2\right)^2}{3\left(xy+yz+zx\right)}\ge\frac{x^2+y^2+z^2}{3}\ge\frac{xy+yz+zx}{3}=2\)

Dấu = xảy ra khi \(x=y=z=\sqrt{2}\Rightarrow a=b=c=\frac{1}{\sqrt{2}}\)