K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

+)\(ab+bc+ca\le a^2+b^2+c^2\)

\(\Leftrightarrow2a^2+2b^2+2c^2\ge2ab+2bc+ca\)

\(\Leftrightarrow\left(a^2-2ab+b^2\right)+\left(b^2-2bc+c^2\right)+\left(c^2-2ca+a^2\right)\ge0\)

\(\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\ge0\)(luôn đúng)

+)\(a^2+b^2+c^2< 2\left(ab+bc+ca\right)\)

\(\Leftrightarrow a^2+b^2+c^2-2\left(ab+bc+ca\right)< 0\)

\(\Leftrightarrow\left(a^2-ab-ca\right)+\left(b^2-ab-bc\right)+\left(c^2-bc-ca\right)< 0\)

\(\Leftrightarrow a\left(a-b-c\right)+b\left(b-a-c\right)+c\left(c-b-a\right)< 0\)(luôn đúng)

9 tháng 4 2018

Mình cảm ơn bạn nhé haha

29 tháng 4 2018

\(a,b,c\) là 3 cạnh của tam giác

Theo BĐT tam giác ta có: 

 \(\hept{\begin{cases}a< b+c\\b< c+a\\c< a+b\end{cases}}\)  \(\Leftrightarrow\) \(\hept{\begin{cases}a^2< a\left(b+c\right)=ab+ac\left(1\right)\\b^2< b\left(c+a\right)=bc+ab\left(2\right)\\c^2< c\left(a+b\right)=ac+bc\left(3\right)\end{cases}}\)

Cộng theo vế (1), (2), (3)  ta có:

       \(a^2+b^2+c^2< 2\left(ab+bc+ca\right)\) (đpcm)

8 tháng 8 2017

Áp dụng bất đẳng thức tam giác ta có :

\(\Rightarrow\left\{{}\begin{matrix}b+c>a\\a+c>b\\a+b>c\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}ab+ac>a^2\\ba+bc>b^2\\ca+cb>c^2\end{matrix}\right.\)

Cộng vế theo vế ta được : 2 (ab + ac + bc ) > a2 + b2 + c2

10 tháng 8 2017

Áp dụng BĐT tam giác ta được:

a + b > c

b + c > a

a + c > b

Suy ra: ac + bc > c^2 (1)

ab + ac > a^2 (2)

ab + bc > b^2 (3)

Lấy (1) + (2) + (3) ta được:

a^2 + b^2 + c^2 < 2(ab + bc + ca) (đpcm)

31 tháng 1 2017

ab+bc+ca \(\le\) a^2+b^2+c^2

<=> a^2+b^2+c^2-ab-bc-ca \(\ge\) 0

<=> 2a^2 + 2b^2 + 2c^2 - 2ab - 2bc - 2ca \(\ge\) 0

<=> (a^2+b^2-2ab) + (b^2+c^2-2bc) + (c^2+a^2-2ca) \(\ge\)0

<=> (a-b)^2 + (b-c)^2 + (c-a)^2 \(\ge\)0, luôn đúng

a^2+b^2+c^2 < 2(ab+bc+ca)

<=> a^2+b^2+c^2-2ab-2bc-2ca < 0

<=> (a^2+b^2-2ab) + (b^2+c^2-2bc) + (c^2+a^2-2ca) - a^2 - b^2 - c^2 < 0

<=> (a-b)^2 + (b-c)^2 + (c-a)^2 - a^2 - b^2 - c^2 < 0, luôn đúng

Ta co đpcm

31 tháng 1 2017

a,b,c > 0

Áp dụng bđt AM-GM : a2+b2 \(\ge\) 2ab , b2+c2 \(\ge\) 2bc , c2+a2 \(\ge\) 2ca 

Cộng theo vế : 2(a2+b2+c2\(\ge\) 2(ab+bc+ac) => a2+b2+c2 \(\ge\) ab+bc+ca

theo bđt tam giác : a+b > c =>c(a+b) > c2 =>ac+bc > c2

b+c>a => ab+ac > a2,a+c > b=>ab+bc > b2

Cộng theo vế : 2(ab+bc+ac) > a2+b2+c2

29 tháng 10 2019

Ta có : ( a - b )2  + 4ab

= a2 - 2ab + b+ 4ab

= a+ 2ab + b2

= ( a + b )( Vế trái )

Do đó : ( a + b )= ( a - b )2 + 4ab 

29 tháng 10 2019

+) Biến đổi vế phải ta có :

\(\left(A-B\right)^2+4AB\)

\(=A^2-2AB+B^2+4AB\)

\(=A^2+2AB+B^2=\left(A+B\right)^2=VT\left(đpcm\right)\)

14 tháng 9 2017

Vì a,b,c là độ dài 3 cạnh 1 tam giác nên:

\(a< b+c\Rightarrow a^2< ab+ac\)

Tương tự:

\(b^2< ab+bc;c^2< ac+bc\)

\(\Rightarrow a^2+b^2+c^2< 2\left(ab+bc+ac\right)\left(đpcm\right)\)

20 tháng 7 2019

A B C M N E D I

a) Vì AM = MB và AN =NC

=> MN là đường trung bình cảu tam giác ABC

=> MN // BC

=> Tứ giác BCNM là hình thang

Vì tam giác ABC cân tại A

=> C = B 

=> hình thang BCNM cân

b) ABD + ABE = 180 ( kề bù )

    ACE + ACD  =  180 ( kề bù )

mà ABE = ACD ( tam giác ABC cân tại A )

=> ABD = ACE 

Xét tam giác ABD và tam giác ACE có :

 AB = AC ( tam giác ABC cân tại A )

ABD = ACE ( cm trên )

BD = CE ( GT )

=> tam giác ABD = tam giác ACE ( c.g.c )

=> AD = AE ( 2 cạnh tương ứng )

=> tam giác ADE cân tại A

Còn 2 phần cuối mk đang nghĩ

20 tháng 7 2019

Cám ơn bạn đã giúp mình câu ab nha

18 tháng 7 2018

Ta có; \(a^2+b^2+c^2=ab+bc+ca\Leftrightarrow2\left(a^2+b^2+c^2\right)=2\left(ab+bc+ca\right)\)

\(\Leftrightarrow2a^2+2b^2+2c^2=2ab+2bc+2ca\Leftrightarrow2a^2+2b^2+2c^2-2ab-2bc-2ca=0\)

\(\Leftrightarrow\left(a^2-2ab+b^2\right)+\left(b^2-2bc+c^2\right)+\left(c^2-2ca+a^2\right)=0\)

\(\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=0\)

Mà \(\left(a-b\right)^2\ge0;\left(b-c\right)^2\ge0;\left(c-a\right)^2\ge0\Rightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\ge0\)

Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}a-b=0\\b-c=0\\c-a=0\end{cases}\Leftrightarrow a=b=c}\)

Vậy...