Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a,b,c\) là 3 cạnh của tam giác
Theo BĐT tam giác ta có:
\(\hept{\begin{cases}a< b+c\\b< c+a\\c< a+b\end{cases}}\) \(\Leftrightarrow\) \(\hept{\begin{cases}a^2< a\left(b+c\right)=ab+ac\left(1\right)\\b^2< b\left(c+a\right)=bc+ab\left(2\right)\\c^2< c\left(a+b\right)=ac+bc\left(3\right)\end{cases}}\)
Cộng theo vế (1), (2), (3) ta có:
\(a^2+b^2+c^2< 2\left(ab+bc+ca\right)\) (đpcm)
Áp dụng bất đẳng thức tam giác ta có :
\(\Rightarrow\left\{{}\begin{matrix}b+c>a\\a+c>b\\a+b>c\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}ab+ac>a^2\\ba+bc>b^2\\ca+cb>c^2\end{matrix}\right.\)
Cộng vế theo vế ta được : 2 (ab + ac + bc ) > a2 + b2 + c2
Áp dụng BĐT tam giác ta được:
a + b > c
b + c > a
a + c > b
Suy ra: ac + bc > c^2 (1)
ab + ac > a^2 (2)
ab + bc > b^2 (3)
Lấy (1) + (2) + (3) ta được:
a^2 + b^2 + c^2 < 2(ab + bc + ca) (đpcm)
ab+bc+ca \(\le\) a^2+b^2+c^2
<=> a^2+b^2+c^2-ab-bc-ca \(\ge\) 0
<=> 2a^2 + 2b^2 + 2c^2 - 2ab - 2bc - 2ca \(\ge\) 0
<=> (a^2+b^2-2ab) + (b^2+c^2-2bc) + (c^2+a^2-2ca) \(\ge\)0
<=> (a-b)^2 + (b-c)^2 + (c-a)^2 \(\ge\)0, luôn đúng
a^2+b^2+c^2 < 2(ab+bc+ca)
<=> a^2+b^2+c^2-2ab-2bc-2ca < 0
<=> (a^2+b^2-2ab) + (b^2+c^2-2bc) + (c^2+a^2-2ca) - a^2 - b^2 - c^2 < 0
<=> (a-b)^2 + (b-c)^2 + (c-a)^2 - a^2 - b^2 - c^2 < 0, luôn đúng
Ta co đpcm
a,b,c > 0
Áp dụng bđt AM-GM : a2+b2 \(\ge\) 2ab , b2+c2 \(\ge\) 2bc , c2+a2 \(\ge\) 2ca
Cộng theo vế : 2(a2+b2+c2) \(\ge\) 2(ab+bc+ac) => a2+b2+c2 \(\ge\) ab+bc+ca
theo bđt tam giác : a+b > c =>c(a+b) > c2 =>ac+bc > c2
b+c>a => ab+ac > a2,a+c > b=>ab+bc > b2
Cộng theo vế : 2(ab+bc+ac) > a2+b2+c2
Ta có : ( a - b )2 + 4ab
= a2 - 2ab + b2 + 4ab
= a2 + 2ab + b2
= ( a + b )2 ( Vế trái )
Do đó : ( a + b )2 = ( a - b )2 + 4ab
+) Biến đổi vế phải ta có :
\(\left(A-B\right)^2+4AB\)
\(=A^2-2AB+B^2+4AB\)
\(=A^2+2AB+B^2=\left(A+B\right)^2=VT\left(đpcm\right)\)
Vì a,b,c là độ dài 3 cạnh 1 tam giác nên:
\(a< b+c\Rightarrow a^2< ab+ac\)
Tương tự:
\(b^2< ab+bc;c^2< ac+bc\)
\(\Rightarrow a^2+b^2+c^2< 2\left(ab+bc+ac\right)\left(đpcm\right)\)
A B C M N E D I
a) Vì AM = MB và AN =NC
=> MN là đường trung bình cảu tam giác ABC
=> MN // BC
=> Tứ giác BCNM là hình thang
Vì tam giác ABC cân tại A
=> C = B
=> hình thang BCNM cân
b) ABD + ABE = 180 ( kề bù )
ACE + ACD = 180 ( kề bù )
mà ABE = ACD ( tam giác ABC cân tại A )
=> ABD = ACE
Xét tam giác ABD và tam giác ACE có :
AB = AC ( tam giác ABC cân tại A )
ABD = ACE ( cm trên )
BD = CE ( GT )
=> tam giác ABD = tam giác ACE ( c.g.c )
=> AD = AE ( 2 cạnh tương ứng )
=> tam giác ADE cân tại A
Còn 2 phần cuối mk đang nghĩ
Ta có; \(a^2+b^2+c^2=ab+bc+ca\Leftrightarrow2\left(a^2+b^2+c^2\right)=2\left(ab+bc+ca\right)\)
\(\Leftrightarrow2a^2+2b^2+2c^2=2ab+2bc+2ca\Leftrightarrow2a^2+2b^2+2c^2-2ab-2bc-2ca=0\)
\(\Leftrightarrow\left(a^2-2ab+b^2\right)+\left(b^2-2bc+c^2\right)+\left(c^2-2ca+a^2\right)=0\)
\(\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=0\)
Mà \(\left(a-b\right)^2\ge0;\left(b-c\right)^2\ge0;\left(c-a\right)^2\ge0\Rightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\ge0\)
Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}a-b=0\\b-c=0\\c-a=0\end{cases}\Leftrightarrow a=b=c}\)
Vậy...
+)\(ab+bc+ca\le a^2+b^2+c^2\)
\(\Leftrightarrow2a^2+2b^2+2c^2\ge2ab+2bc+ca\)
\(\Leftrightarrow\left(a^2-2ab+b^2\right)+\left(b^2-2bc+c^2\right)+\left(c^2-2ca+a^2\right)\ge0\)
\(\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\ge0\)(luôn đúng)
+)\(a^2+b^2+c^2< 2\left(ab+bc+ca\right)\)
\(\Leftrightarrow a^2+b^2+c^2-2\left(ab+bc+ca\right)< 0\)
\(\Leftrightarrow\left(a^2-ab-ca\right)+\left(b^2-ab-bc\right)+\left(c^2-bc-ca\right)< 0\)
\(\Leftrightarrow a\left(a-b-c\right)+b\left(b-a-c\right)+c\left(c-b-a\right)< 0\)(luôn đúng)
Mình cảm ơn bạn nhé