Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Mình sẽ trình bày chi tiết lời giải như khi viết vào vở, rõ ràng từng bước nhé:
Bài toán: Cho \(a , b , c \geq 0 , \textrm{ }\textrm{ } a + b + c = 1\). Tìm giá trị nhỏ nhất của
\(P = \frac{1}{a^{2} + \frac{\left(\right. b - c \left.\right)^{2}}{4}} + \frac{1}{b^{2} + \frac{\left(\right. c - a \left.\right)^{2}}{4}} + \frac{1}{c^{2} + \frac{\left(\right. a - b \left.\right)^{2}}{4}} .\)
Lời giải:
Xét hạng tử thứ nhất:
\(a^{2} + \frac{\left(\right. b - c \left.\right)^{2}}{4} = \frac{\left(\right. 2 a \left.\right)^{2} + \left(\right. b - c \left.\right)^{2}}{4} .\)
Nhận xét rằng:
\(\left(\right. 2 a \left.\right)^{2} + \left(\right. b - c \left.\right)^{2} \leq \left(\right. a + b + c \left.\right)^{2} = 1^{2} = 1 ,\)
không đúng cho mọi \(a , b , c\). → Ta thử cách khác.
Cách 1: Thử giá trị đặc biệt
- Với \(a = b = c = \frac{1}{3}\):
\(P = \frac{1}{\left(\right. 1 / 3 \left.\right)^{2}} + \frac{1}{\left(\right. 1 / 3 \left.\right)^{2}} + \frac{1}{\left(\right. 1 / 3 \left.\right)^{2}} = 3 \cdot 9 = 27.\)
- Với \(\left(\right. a , b , c \left.\right) = \left(\right. 1 , 0 , 0 \left.\right)\):
\(P = \frac{1}{1^{2}} + \frac{1}{0^{2} + \left(\right. 0 - 1 \left.\right)^{2} / 4} + \frac{1}{0^{2} + \left(\right. 1 - 0 \left.\right)^{2} / 4} = 1 + 4 + 4 = 9.\)
Tương tự với \(\left(\right. 0 , 1 , 0 \left.\right)\) hoặc \(\left(\right. 0 , 0 , 1 \left.\right)\), đều có \(P = 9\).
Cách 2: Biện luận
Do \(a + b + c = 1\), giả sử \(a = 1 , b = c = 0\) thì \(P = 9\).
Nếu ba số dương và bằng nhau, \(P = 27 > 9\).
Dễ thấy khi các số phân bố đều, mẫu số nhỏ → giá trị lớn; còn khi dồn hết vào một biến, mẫu số lớn → giá trị nhỏ.
Suy ra giá trị nhỏ nhất của \(P\) đạt tại biên, khi một biến bằng 1, hai biến còn lại bằng 0.
Kết luận:
Pmin=9
dấu bằng xảy ra khi \(\left(\right. a , b , c \left.\right) = \left(\right. 1 , 0 , 0 \left.\right)\) hoặc hoán vị.
xin cái tickkkk=)

ta có:
\(A^2=\left(\frac{a}{\sqrt{a^2+1}}+\frac{b}{\sqrt{b^2+1}}+\frac{c}{\sqrt{c^2+1}}\right)^2\le\left(a+b+c\right)\left(\frac{a}{a^2+1}+\frac{b}{b^2+1}+\frac{c}{c^2+1}\right)\) (BĐT Bu-nhi-a)
=>\(A^2\le\sqrt{3}\left(\frac{a}{a^2+1}+\frac{b}{b^2+1}+\frac{c}{c^2+1}\right)\) (*)
mặt khác ta có: \(a^2+1\ge2a\) (BĐT cauchy ) =>\(\frac{a}{a^2+1}\le\frac{1}{2}\)
tương tự ta có: \(\frac{b}{b^2+1}\le\frac{1}{2}\) ; \(\frac{c}{c^2+1}\le\frac{1}{2}\)
=> \(\frac{a}{a^2+1}+\frac{b}{b^2+1}+\frac{c}{c^2+1}\le\frac{1}{2}+\frac{1}{2}+\frac{1}{2}=\frac{3}{2}\) (**)
từ (*),(**) => \(A^2\le\sqrt{3}.\frac{3}{2}=\frac{3\sqrt{3}}{2}\)
=>\(A\le\sqrt{\frac{3\sqrt{3}}{2}}\)
=> GTLN của A là \(\sqrt{\frac{3\sqrt{3}}{2}}\) <=> a=b=c<\(\frac{\sqrt{3}}{3}\)
Ta có:
\(\frac{a}{\sqrt{a^2+1}}=\frac{a}{\sqrt{a^2+\frac{1}{3}+\frac{1}{3}+\frac{1}{3}}}\)
\(\le\frac{\sqrt[8]{27}a}{\sqrt{4\sqrt[4]{a^2}}}=\frac{\sqrt[8]{27a^6}}{2}\)
\(=\frac{\sqrt{3}}{2}.\sqrt[8]{a^6.\frac{1}{3}}\)
\(\le\frac{\sqrt{3}}{2}.\frac{6a+\frac{2}{\sqrt{3}}}{8}\left(1\right)\)
Tương tự ta cũng có:
\(\hept{\begin{cases}\frac{b}{\sqrt{b^2+1}}\le\frac{\sqrt{3}}{2}.\frac{6b+\frac{2}{\sqrt{3}}}{8}\left(2\right)\\\frac{c}{\sqrt{c^2+1}}\le\frac{\sqrt{3}}{2}.\frac{6c+\frac{2}{\sqrt{3}}}{8}\left(3\right)\end{cases}}\)
Từ (1), (2), (3)
\(\Rightarrow A\le\frac{\sqrt{3}}{2}.\left(\frac{6}{8\sqrt{3}}+\frac{6}{8}\left(a+b+c\right)\right)\)
\(\le\frac{\sqrt{3}}{2}.\left(\frac{3}{4\sqrt{3}}+\frac{3\sqrt{3}}{4}\right)=\frac{3}{2}\)
Dấu = xảy ra khi \(a=b=c=\frac{1}{\sqrt{3}}\)

Để ý: \(ab+bc+ca=\frac{\left[\left(a+b+c\right)^2-\left(a^2+b^2+c^2\right)\right]}{2}\).
Do đó đặt \(a^2+b^2+c^2=x>0;a+b+c=y>0\). Bài toán được viết lại thành:
Cho \(y^2+5x=24\), tìm max:
\(P=\frac{x}{y}+\frac{y^2-x}{2}=\frac{5x}{5y}+\frac{y^2-x}{2}\)
\(=\frac{24-y^2}{5y}+\frac{y^2-\frac{24-y^2}{5}}{2}\)
\(=\frac{24-y^2}{5y}+\frac{3\left(y^2-4\right)}{5}\)\(=\frac{3y^3-y^2-12y+24}{5y}\)
Đặt \(y=t\). Dễ thấy \(12=3\left(a^2+b^2+c^2\right)+\left(ab+bc+ca\right)=3t^2-5\left(ab+bc+ca\right)\)
Và dễ dàng chứng minh \(ab+bc+ca\le3\)
Suy ra \(3t^2=12+5\left(ab+bc+ca\right)\le27\Rightarrow t\le3\). Mặt khác do a, b, c>0 do đó \(0< t\le3\).
Ta cần tìm Max P với \(P=\frac{3t^3-t^2-12t+24}{5t}\)và \(0< t\le3\)
Ta thấy khi t tăng thì P tăng. Do đó P đạt giá trị lớn nhất khi t lớn nhất.
Khi đó P = 3. Vậy...
\(P=\Sigma_{cyc}\sqrt{\frac{a}{a+1}}=\Sigma_{cyc}2\sqrt{\frac{1}{4}\left(1-\frac{1}{a+1}\right)}\)
\(\le\Sigma_{cyc}\left[\frac{1}{4}+\left(1-\frac{1}{a+1}\right)\right]=\frac{15}{4}-\left(\frac{1}{a+1}+\frac{1}{b+1}+\frac{1}{c+1}\right)\)
\(\le\frac{15}{4}-\frac{9}{a+b+c+3}=\frac{3}{2}\)
Đẳng thức xảy ra khi \(a=b=c=\frac{1}{3}\)
Cách khác:
\(P=\Sigma_{cyc}\sqrt{\frac{a}{a+1}}=\Sigma_{cyc}\sqrt{a.\frac{1}{\left(a+b\right)+\left(a+c\right)}}\)
\(\le\Sigma_{cyc}\sqrt{\frac{1}{4}a\left(\frac{1}{a+b}+\frac{1}{a+c}\right)}=\frac{1}{2}\Sigma_{cyc}\sqrt{1\left(\frac{a}{a+b}+\frac{a}{a+c}\right)}\)
\(\le\frac{1}{4}.\Sigma_{cyc}\left(1+\frac{a}{a+b}+\frac{a}{a+c}\right)=\frac{3}{2}\)
Đẳng thức xảy ra khi a = b = c