\(\sqrt{\frac{a}{a+1}}+\sqrt{\frac{b}{b+1}}+\sqrt{...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 2 2020

\(P=\Sigma_{cyc}\sqrt{\frac{a}{a+1}}=\Sigma_{cyc}2\sqrt{\frac{1}{4}\left(1-\frac{1}{a+1}\right)}\)

\(\le\Sigma_{cyc}\left[\frac{1}{4}+\left(1-\frac{1}{a+1}\right)\right]=\frac{15}{4}-\left(\frac{1}{a+1}+\frac{1}{b+1}+\frac{1}{c+1}\right)\)

\(\le\frac{15}{4}-\frac{9}{a+b+c+3}=\frac{3}{2}\)

Đẳng thức xảy ra khi \(a=b=c=\frac{1}{3}\)

9 tháng 2 2020

Cách khác:

\(P=\Sigma_{cyc}\sqrt{\frac{a}{a+1}}=\Sigma_{cyc}\sqrt{a.\frac{1}{\left(a+b\right)+\left(a+c\right)}}\)

\(\le\Sigma_{cyc}\sqrt{\frac{1}{4}a\left(\frac{1}{a+b}+\frac{1}{a+c}\right)}=\frac{1}{2}\Sigma_{cyc}\sqrt{1\left(\frac{a}{a+b}+\frac{a}{a+c}\right)}\)

\(\le\frac{1}{4}.\Sigma_{cyc}\left(1+\frac{a}{a+b}+\frac{a}{a+c}\right)=\frac{3}{2}\)

Đẳng thức xảy ra khi a = b = c

7 tháng 10 2017

ta có:

\(A^2=\left(\frac{a}{\sqrt{a^2+1}}+\frac{b}{\sqrt{b^2+1}}+\frac{c}{\sqrt{c^2+1}}\right)^2\le\left(a+b+c\right)\left(\frac{a}{a^2+1}+\frac{b}{b^2+1}+\frac{c}{c^2+1}\right)\) (BĐT Bu-nhi-a)

=>\(A^2\le\sqrt{3}\left(\frac{a}{a^2+1}+\frac{b}{b^2+1}+\frac{c}{c^2+1}\right)\)      (*)

mặt khác ta có: \(a^2+1\ge2a\) (BĐT cauchy ) =>\(\frac{a}{a^2+1}\le\frac{1}{2}\)

tương tự ta có: \(\frac{b}{b^2+1}\le\frac{1}{2}\)    ;    \(\frac{c}{c^2+1}\le\frac{1}{2}\)

=> \(\frac{a}{a^2+1}+\frac{b}{b^2+1}+\frac{c}{c^2+1}\le\frac{1}{2}+\frac{1}{2}+\frac{1}{2}=\frac{3}{2}\)     (**)  

từ (*),(**) => \(A^2\le\sqrt{3}.\frac{3}{2}=\frac{3\sqrt{3}}{2}\)

=>\(A\le\sqrt{\frac{3\sqrt{3}}{2}}\)

=> GTLN của A là \(\sqrt{\frac{3\sqrt{3}}{2}}\)   <=> a=b=c<\(\frac{\sqrt{3}}{3}\)

8 tháng 10 2017

Ta có:

\(\frac{a}{\sqrt{a^2+1}}=\frac{a}{\sqrt{a^2+\frac{1}{3}+\frac{1}{3}+\frac{1}{3}}}\)

\(\le\frac{\sqrt[8]{27}a}{\sqrt{4\sqrt[4]{a^2}}}=\frac{\sqrt[8]{27a^6}}{2}\)

\(=\frac{\sqrt{3}}{2}.\sqrt[8]{a^6.\frac{1}{3}}\)

\(\le\frac{\sqrt{3}}{2}.\frac{6a+\frac{2}{\sqrt{3}}}{8}\left(1\right)\)

Tương tự ta cũng có:

\(\hept{\begin{cases}\frac{b}{\sqrt{b^2+1}}\le\frac{\sqrt{3}}{2}.\frac{6b+\frac{2}{\sqrt{3}}}{8}\left(2\right)\\\frac{c}{\sqrt{c^2+1}}\le\frac{\sqrt{3}}{2}.\frac{6c+\frac{2}{\sqrt{3}}}{8}\left(3\right)\end{cases}}\)

Từ (1), (2), (3) 

\(\Rightarrow A\le\frac{\sqrt{3}}{2}.\left(\frac{6}{8\sqrt{3}}+\frac{6}{8}\left(a+b+c\right)\right)\)

\(\le\frac{\sqrt{3}}{2}.\left(\frac{3}{4\sqrt{3}}+\frac{3\sqrt{3}}{4}\right)=\frac{3}{2}\)

Dấu = xảy ra khi \(a=b=c=\frac{1}{\sqrt{3}}\)        

17 tháng 8 2019

Để ý: \(ab+bc+ca=\frac{\left[\left(a+b+c\right)^2-\left(a^2+b^2+c^2\right)\right]}{2}\).

Do đó đặt  \(a^2+b^2+c^2=x>0;a+b+c=y>0\). Bài toán được viết lại thành:

Cho \(y^2+5x=24\), tìm max:

\(P=\frac{x}{y}+\frac{y^2-x}{2}=\frac{5x}{5y}+\frac{y^2-x}{2}\)

\(=\frac{24-y^2}{5y}+\frac{y^2-\frac{24-y^2}{5}}{2}\)

\(=\frac{24-y^2}{5y}+\frac{3\left(y^2-4\right)}{5}\)\(=\frac{3y^3-y^2-12y+24}{5y}\)

Đặt \(y=t\). Dễ thấy \(12=3\left(a^2+b^2+c^2\right)+\left(ab+bc+ca\right)=3t^2-5\left(ab+bc+ca\right)\)

Và dễ dàng chứng minh \(ab+bc+ca\le3\)

Suy ra \(3t^2=12+5\left(ab+bc+ca\right)\le27\Rightarrow t\le3\). Mặt khác do a, b, c>0 do đó \(0< t\le3\).

Ta cần tìm Max P với \(P=\frac{3t^3-t^2-12t+24}{5t}\)và \(0< t\le3\)

Ta thấy khi t tăng thì P tăng. Do đó P đạt giá trị lớn nhất khi t lớn nhất.

Khi đó P = 3. Vậy...

11 tháng 10 2019

a b c la : nhau vay a 2 b 5 c 9

11 tháng 10 2019

dap an laf a 4  b 6c 14