Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có BĐT \(\frac{1}{x+y}\le\frac{1}{4}\left(\frac{1}{x}+\frac{1}{y}\right)\) (tự c/m)
Áp dụng vào,ta có: \(\frac{ab}{c+1}=\frac{ab}{\left(c+a\right)+\left(c+b\right)}\le\frac{ab}{4\left(c+a\right)}+\frac{ab}{4\left(c+b\right)}\) (Làm tắt,ráng hiểu)
Chứng minh tương tự và cộng theo vế:
\(VT\le\frac{a}{4}+\frac{b}{4}+\frac{c}{4}=\frac{a+b+c}{4}=\frac{1}{4}\) (đpcm)
Dấu "=" xảy ra khi \(a=b=c=\frac{1}{3}\)
Thấy : \(a;b;c\ge0;a+b+c=1\) \(\Rightarrow1-a;1-b;1-c\ge0\)
AD BĐT AM - GM ta được : \(4\left(1-a\right)\left(1-c\right)\le\left(2-a-c\right)^2=\left[2-\left(1-b\right)\right]^2=\left(b+1\right)^2\)
\(\Rightarrow4\left(1-a\right)\left(1-b\right)\left(1-c\right)\le\left(1-b\right)\left(b+1\right)^2=\left(1-b^2\right)\left(b+1\right)\le1.\left(b+1\right)=b+1=b+\left(a+b+c\right)=a+2b+c\)
( đpcm )
ta có:
\(c+ab=c.1+ab=c\left(a+b+c\right)+ab=ca+cb+c^2+ab=\left(c+a\right)\left(c+b\right)\)
tương tự như vậy thì \(P=\sqrt{\frac{ab}{\left(a+c\right)\left(b+c\right)}}+\sqrt{\frac{bc}{\left(a+b\right)\left(c+a\right)}}+\sqrt{\frac{ca}{\left(a+b\right)\left(b+c\right)}}\)
áp dụng bđt cô si ta có:
\(\frac{a}{a+c}+\frac{b}{b+c}\ge2\sqrt{\frac{ab}{\left(c+a\right)\left(b+c\right)}};\frac{b}{a+b}+\frac{c}{c+a}\ge2\sqrt{\frac{bc}{\left(a+b\right)\left(c+a\right)}};\frac{a}{a+b}+\frac{c}{b+c}\ge2\sqrt{\frac{ca}{\left(a+b\right)\left(b+c\right)}}\)
\(\Rightarrow P\le\frac{1}{2}\left(\frac{a}{a+b}+\frac{b}{a+b}+\frac{c}{c+a}+\frac{a}{a+c}+\frac{b}{b+c}+\frac{c}{b+c}\right)=\frac{3}{2}\left(Q.E.D\right)\)
\(\dfrac{2}{a+2}+\dfrac{2}{b+2}+\dfrac{2}{c+2}\ge2\)
\(\Leftrightarrow\dfrac{2}{a+2}-1+\dfrac{2}{b+2}-1+\dfrac{2}{c+2}-1\ge2-3\)
\(\Rightarrow1\ge\dfrac{a}{a+2}+\dfrac{b}{b+2}+\dfrac{c}{c+2}=\dfrac{a^2}{a^2+2a}+\dfrac{b^2}{b^2+2b}+\dfrac{c^2}{c^2+2c}\)
\(\Rightarrow1\ge\dfrac{\left(a+b+c\right)^2}{a^2+2a+b^2+2b+c^2+2c}\)
\(\Rightarrow a^2+b^2+c^2+2\left(a+b+c\right)\ge a^2+b^2+c^2+2\left(ab+bc+ca\right)\)
\(\Rightarrow\) đpcm
Phía trên thoả mãn \(\ge1\) chứ không phải 3/2 đâu ạ
a2(b+c)2+5bc+b2(a+c)2+5ac≥4a29(b+c)2+4b29(a+c)2=49(a2(1−a)2+b2(1−b)2)(vì a+b+c=1)
a2(1−a)2−9a−24=(2−x)(3x−1)24(1−a)2≥0(vì )<a<1)
⇒a2(1−a)2≥9a−24
tương tự: b2(1−b)2≥9b−24
⇒P⩾49(9a−24+9b−24)−3(a+b)24=(a+b)−94−3(a+b)24.
đặt t=a+b(0<t<1)⇒P≥F(t)=−3t24+t−94(∗)
Xét hàm (∗) được: MinF(t)=F(23)=−19
⇒MinP=MinF(t)=−19.dấu "=" xảy ra khi a=b=c=13
Áp dụng BĐT \(\frac{1}{x+y}\le\frac{1}{4}\left(\frac{1}{x}+\frac{1}{y}\right)\) ta có:
\(\frac{ab}{c+1}=\frac{ab}{\left(a+c\right)\left(b+c\right)}\le\frac{1}{4}\left(\frac{ab}{a+c}+\frac{ab}{b+c}\right)\)
Tương tự ta có:
\(\frac{bc}{a+1}\le\frac{1}{4}\left(\frac{bc}{b+a}+\frac{bc}{c+a}\right);\frac{ac}{b+1}\le\frac{1}{4}\left(\frac{ac}{a+b}+\frac{ac}{c+b}\right)\)
Cộng theo vế ta được:
\(\frac{ab}{c+1}+\frac{bc}{a+1}+\frac{ac}{b+1}\le\frac{1}{4}\left[\left(\frac{ab}{b+c}+\frac{ac}{c+b}\right)+\left(\frac{ab}{a+c}+\frac{bc}{c+a}\right)+\left(\frac{bc}{b+a}+\frac{ac}{a+b}\right)\right]\)
\(=\frac{1}{4}\left(a+b+c\right)=\frac{1}{4}\)
Dấu "=" khi \(a=b=c=\frac{1}{3}\)