\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=0\)

rút gọn:N=

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 7 2016

a,b,c khác nhau đôi một nghĩa là từng cặp số khác nhau ,là:

+a khác b

+b khác c

+c khác a

\(A=\frac{1}{a^2+2bc}+\frac{1}{b^2+2ac}+\frac{1}{c^2+2ab}\)

Từ \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=0=>\frac{ab+bc+ac}{abc}=0=>ab+bc+ac=0\)

Suy ra: \(ab==-\left(bc+ac\right)=-bc-ac\)

    \(bc=-\left(ab+ac\right)=-ab-ac\)

\(ac=-\left(ab+bc\right)=-ab-bc\)

Nên \(a^2+2ab=a^2+bc+bc=a^2+bc+\left(-ab-ac\right)=a\left(a-b\right)-c\left(a-b\right)=\left(a-b\right)\left(a-c\right)\)

Tương tự,ta cũng có: \(b^2+2ac=\left(b-a\right)\left(b-c\right)\)

                               \(c^2+2ab=\left(c-a\right)\left(c-b\right)\)

Vậy \(A=\frac{1}{\left(a-b\right)\left(a-c\right)}+\frac{1}{\left(b-c\right)\left(b-c\right)}+\frac{1}{\left(c-a\right)\left(c-b\right)}=\frac{b-c+c-a+a-b}{\left(a-b\right)\left(b-c\right)\left(a-c\right)}=0\)

10 tháng 7 2016

những câu còn lại tương tự,bn tự làm nhé
 

13 tháng 3 2017

a) đáp án A=1

b) B=0

c) C=1

23 tháng 11 2020

\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=0\)

\(\Leftrightarrow abc.\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)=0\Leftrightarrow\hept{\begin{cases}bc=-\left(ab+ac\right)\\ab=-\left(bc+ac\right)\\ac=-\left(bc+ab\right)\end{cases}}\)

Ta có: \(a^2+2bc=a^2+bc+bc=a^2+bc+\left(-ab-ac\right)=\left(a-b\right)\left(a-c\right)\)

Tương tự \(b^2+2ac=\left(b-a\right)\left(b-c\right);c^2+2ab=\left(c-a\right)\left(c-b\right)\)

\(\Leftrightarrow N=\frac{bc}{\left(a-b\right)\left(a-c\right)}+\frac{ac}{\left(b-a\right)\left(b-c\right)}+\frac{ab}{\left(c-a\right)\left(c-b\right)}\)

\(=\frac{ab\left(a-b\right)+c^2\left(a-b\right)-c\left(a^2-b^2\right)}{\left(a-b\right)\left(b-c\right)\left(a-c\right)}=\frac{\left(a-b\right)\left(b-c\right)\left(a-c\right)}{\left(a-b\right)\left(b-c\right)\left(a-c\right)}=1\)

1 tháng 9 2016

ai làm đúng và nhanh nhất mình tích cho!!!!!!!!!

8 tháng 1 2017

em moi hoc lop 7

30 tháng 3 2018

          \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=0\)

\(\Leftrightarrow\)\(\frac{ab+bc+ca}{abc}=0\)

\(\Rightarrow\)\(ab+bc+ca=0\)

\(\Rightarrow\)\(\hept{\begin{cases}ab=-\left(bc+ca\right)\\bc=-\left(ab+ca\right)\\ca=-\left(ab+bc\right)\end{cases}}\)

\(\Rightarrow\)\(\hept{\begin{cases}a^2+2bc=a^2+bc-ab-ca=\left(a-b\right)\left(a-c\right)\\b^2+2ac=b^2+ac-ab-bc=\left(b-c\right)\left(b-a\right)\\c^2+2ab=c^2+ab-bc-ca=\left(c-a\right)\left(c-b\right)\end{cases}}\)

\(A=\frac{1}{\left(a-b\right)\left(a-c\right)}+\frac{1}{\left(b-c\right)\left(b-a\right)}+\frac{1}{\left(c-a\right)\left(c-b\right)}\)

P/S: đến đây tự lm nhé

24 tháng 6 2018

bài này có trong câu hỏi tương tự nhé bạn

24 tháng 6 2018

Ta có:\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=0\)

\(\Leftrightarrow\frac{ab+bc+ac}{abc}=0\)

\(\Leftrightarrow ab+bc+ac=0\Rightarrow\hept{\begin{cases}ab=-bc-ac\\bc=-ac-ab\\ac=-ab-bc\end{cases}}\)(*)

Thay (*) vào M ta được:

\(M=\frac{1}{a^2+bc-ab-ac}+\frac{1}{b^2+ac-ab-bc}+\frac{1}{c^2+ab-bc-ac}\)

\(=\frac{1}{a\left(a-b\right)-c\left(a-b\right)}+\frac{1}{a\left(c-b\right)-b\left(c-b\right)}+\frac{1}{c\left(c-a\right)-b\left(c-a\right)}\)

\(=\frac{1}{\left(a-b\right)\left(a-c\right)}+\frac{1}{\left(a-b\right)\left(c-b\right)}-\frac{1}{\left(c-b\right)\left(a-c\right)}\)

\(=\frac{c-b}{\left(a-b\right)\left(a-c\right)\left(c-b\right)}+\frac{a-c}{\left(a-b\right)\left(a-c\right)\left(c-b\right)}-\frac{a-b}{\left(a-b\right)\left(c-b\right)\left(a-c\right)}\)

\(=\frac{c-b+a-c-a+b}{\left(a-b\right)\left(a-c\right)\left(c-b\right)}=0\)

Vậy M = 0

7 tháng 1 2017

Vẫn có \(AB+BC+CA=0\), làm tương tự câu a (à giờ mới nhận ra có 2 chữ A, B và C trùng nhau).

Nên anh kí hiệu biểu thức là \(b\) nha.

\(\frac{A^2}{A^2+2BC}=\frac{A^2}{A^2+BC-CA-AB}=-\frac{A^2}{\left(A-B\right)\left(C-A\right)}\)

Quy đồng mẫu được \(b=-\left[\frac{A^2\left(B-C\right)+B^2\left(C-A\right)+C^2\left(A-B\right)}{\left(A-B\right)\left(B-C\right)\left(C-A\right)}\right]\).

Tự làm tiếp nha em, lâu rồi anh không làm cái này nên cũng lười.

7 tháng 1 2017

(\(AB+BC+CA=0\), đúng không nhỉ?)

Ta có \(\frac{1}{A^2+2BC}=\frac{1}{A^2+BC-AB-AC}=\frac{-1}{\left(A-B\right)\left(C-A\right)}\).

Làm tương tự rồi quy đồng mẫu được \(A=0\).

17 tháng 10 2017

Từ \(\frac{1}{A}+\frac{1}{B}+\frac{1}{C}=0\left(ABC\ne0\right)\), ta có:
\(\frac{1}{A}+\frac{1}{B}+\frac{1}{C}=\frac{BC}{ABC}+\frac{AC}{ABC}+\frac{AB}{ABC}=\frac{BC+AC+AB}{ABC}=0\).
Suy ra \(BC+AC+AB=0\).
Từ đó ta có:
\(\frac{1}{A^2+2BC}=\frac{1}{A^2+BC+BC}=\frac{1}{A^2+BC-AC-AB}\)\(=\frac{1}{A\left(A-C\right)-B\left(A-C\right)}=\frac{1}{\left(A-B\right)\left(A-C\right)}\).Tương tự \(\frac{1}{B^2+2CA}=\frac{1}{\left(A-B\right)\left(C-B\right)}\)\(\frac{1}{C^2+2AB}=\frac{1}{\left(C-A\right)\left(C-B\right)}\).
Do đó:
\(\frac{1}{A^2+2BC}+\frac{1}{B^2+2CA}+\frac{1}{C^2+2AB}=\frac{1}{\left(A-B\right)\left(A-C\right)}+\)\(\frac{1}{\left(A-B\right)\left(C-B\right)}+\frac{1}{\left(C-A\right)\left(C-B\right)}\)
\(=\frac{B-C-\left(A-C\right)+A-B}{\left(A-B\right)\left(A-C\right)\left(B-C\right)}=\frac{0}{\left(A-B\right)\left(A-C\right)\left(B-C\right)}=0\).