Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đề sai rồi: a,b,c > 0 thì làm sao mà có: ab + bc + ca = 0 được.
\(2x^2+2y^2=5xy\Leftrightarrow2x^2+2y^2-5xy=0\)
\(\Leftrightarrow\left(2x-y\right)\left(x-2y\right)=0\Leftrightarrow\orbr{\begin{cases}x=\frac{y}{2}\\x=2y\end{cases}}\)
Mặt khác : x > y > 0 \(\Rightarrow x=2y\)
Ta có : \(E=\frac{x+y}{x-y}=\frac{2y+y}{2y-y}=\frac{3y}{y}=3\)
a) Dễ tự làm đi
b) Xét 1 + a2 = ab + bc + ca + a2
= b(c + a) + a(c + a)
= (c + a)(b + a)
Cmtt ta có : 1 + b2 = (c + b)(a + b)
1 + c2 = (b+c)( a + c)
Do đó : A = \(\frac{\left(a+b\right)^2\left(b+c\right)^2\left(c+a\right)^2}{\left(1+a^2\right)\left(1+b^2\right)\left(1+c^2\right)}\)\(=\frac{\left(a+b\right)^2\left(b+c\right)^2\left(c+a\right)^2}{\left(a+b\right)\left(c+b\right)\left(b+a\right)\left(c+a\right)\left(a+c\right)\left(b+c\right)}\)= 1
Xét a2 + 2bc - 1 = a2 + 2bc - ab - bc - ca
= a2 - ab + bc - ca
= a(a-b) - c(a-b)
= (a-b)(a-c)
Cmtt ta cũng có : b2 + 2ac - 1 = (b-c)(b-a)
c2 + 2ab - 1 = (c-a)(c-b)
Do đó : \(B=\frac{\left(a^2+2bc-1\right)\left(b^2+2ac-1\right)\left(c^2+2ba-1\right)}{\left(a-b\right)^2\left(b-c\right)^2\left(c-a\right)^2}\)
\(=\frac{\left(a-b\right)\left(a-c\right)\left(b-c\right)\left(b-a\right)\left(c-a\right)\left(c-b\right)}{\left(a-b\right)^2\left(b-c\right)^2\left(c-a\right)^2}\)
= -1
Nhiều quá làm 1 bài tiêu biểu thôi nhé:
a/ \(A=\frac{\left(a+b\right)^2\left(b+c\right)^2\left(c+a\right)^2}{\left(1+a^2\right)\left(1+b^2\right)\left(1+c^2\right)}\)
\(=\frac{\left(a+b\right)^2\left(b+c\right)^2\left(c+a\right)^2}{\left(ab+bc+ca+a^2\right)\left(ab+bc+ca+b^2\right)\left(ab+bc+ca+c^2\right)}\)
\(=\frac{\left(a+b\right)^2\left(b+c\right)^2\left(c+a\right)^2}{\left(a+b\right)\left(c+a\right)\left(b+c\right)\left(a+b\right)\left(c+a\right)\left(b+c\right)}=1\)
Câu 3/ \(\sqrt{\left(x+z\right)^2+\left(y-t\right)^2}+\sqrt{\left(x-z\right)^2+\left(y+t\right)^2}\)
\(\le\sqrt{1+2xz-2yt}+\sqrt{1-2xz+2yt}\)
\(\le\dfrac{1+1+2xz-2yt}{2}+\dfrac{1+1-2xz+2yt}{2}=1+1=2\)
\(a^2+b=b^2+c=c^2+a\)
\(\Leftrightarrow\hept{\begin{cases}a^2+b-b^2-c=0\\b^2+c-c^2-a=0\\c^2+a-a^2-b=0\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}a^2-b^2=c-b\\b^2-c^2=a-c\\c^2-a^2=b-a\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}\left(a-b\right)\left(a+b\right)=c-b\\\left(b-c\right)\left(b+c\right)=a-c\\\left(c-a\right)\left(c+a\right)=b-a\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}a+b=\frac{c-b}{a-b}\\b+c=\frac{a-c}{b-c}\\c+a=\frac{b-a}{c-a}\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}a+b-1=\frac{c-a}{a-b}\\b+c-1=\frac{a-b}{b-c}\\c+a-1=\frac{b-c}{c-a}\end{cases}}\)( * )
Thay ( * ) vào T ta được : \(T=\frac{\left(c-a\right)\left(a-b\right)\left(b-c\right)}{\left(a-b\right)\left(b-c\right)\left(c-a\right)}=1\)
Vậy T = 1
\(Ta\) \(có:\) \(1+a^2=ab+bc+ca+a^2=b\left(a+c\right)+a\left(a+c\right)=\left(a+b\right)\left(c+a\right)\)
\(1+b^2=ab+bc+ca+b^2=\left(a+b\right)\left(b+c\right)\)
\(1+c^2=ab+bc+ca+c^2=\left(a+c\right)\left(c+b\right)\)
\(Khi\) \(đó:\) \(A=\dfrac{\left(a+b\right)^2\left(b+c\right)^2\left(c+a\right)^2}{\left(a+b\right)\left(a+c\right)\left(a+b\right)\left(b+c\right)\left(a+c\right)\left(c+b\right)}\)
\(\Rightarrow A=1\)