\((x^2+y^2+z^2):(a^2+b^2+c^2)=(x^2:a^2)+(y^2:b^2)+(z^2:c^2)\)

t...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 8 2016

Bài 1

\(x+y+z=0\)

\(\Leftrightarrow x+y=-z\)

\(\Leftrightarrow\left(x+y\right)^3=-z^3\)

\(\Leftrightarrow x^3+y^3+3xy\left(x+y\right)=-z^3\)

\(\Leftrightarrow x^3+y^3-3xyz=-z^3\) (vì x+y=-z)

\(\Leftrightarrow x^3+y^3+z^3=3xyz\)

6 tháng 1 2021

\(\frac{x^2+y^2+z^2}{a^2+b^2+c^2}=\frac{x^2}{a^2}+\frac{y^2}{b^2}+\frac{z^2}{c^2}\)

\(\Leftrightarrow\left(\frac{x^2}{a^2}-\frac{x^2}{a^2+b^2+c^2}\right)+\left(\frac{y^2}{b^2}-\frac{y^2}{a^2+b^2+c^2}\right)+\left(\frac{z^2}{c^2}-\frac{z^2}{a^2+b^2+c^2}\right)=0\)

\(\Leftrightarrow\left(x^2.\frac{b^2+c^2}{a^2+b^2+c^2}\right)+\left(y^2.\frac{a^2+c^2}{a^2+b^2+c^2}\right)+\left(z^2.\frac{a^2+b^2}{a^2+b^2+c^2}\right)=0\)

Vì a,b,c khác 

=>Dấu bằng xảy ra khi x=y=z=0

\(\Rightarrow x^{2014}+y^{2015}+z^{2016}=0^{2014}+0^{2015}+0^{2016}=0\)

11 tháng 11 2017

cộng cả 4 số => dương => ít nhất 1 số dương 

11 tháng 11 2017

bạn nói rõ hơn đc ko

AH
Akai Haruma
Giáo viên
12 tháng 7 2018

Lời giải:

Ta có:

\(x^2+2y^2+z^2-2xy-2y-4z+5=0\)

\(\Leftrightarrow (x^2+y^2-2xy)+(y^2-2y+1)+(z^2-4z+4)=0\)

\(\Leftrightarrow (x-y)^2+(y-1)^2+(z-2)^2=0\)

Ta thấy:

\(\left\{\begin{matrix} (x-y)^2\geq 0\\ (y-1)^2\geq 0\\ (z-2)^2\geq 0\end{matrix}\right., \forall x,y,z\in\mathbb{R}\)

\(\Rightarrow (x-y)^2+(y-1)^2+(z-2)^2\geq 0\)

Dấu bằng xảy ra khi \(\left\{\begin{matrix} x-y=0\\ y-1=0\\ z-2=0\end{matrix}\right.\Rightarrow \left\{\begin{matrix} x=1\\ y=1\\ z=2\end{matrix}\right.\)

Do đó:

\(A=(x-1)^{2015}+(y-1)^{2015}+(z-1)^{2015}=1\)

21 tháng 8 2020

nếu đề bài cho đẳng thức đó=20 thì lm thế nào ạ?