K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 5 2020

cho \(ax+by+cz=0, a+b+c=0\)

 tính A=\((ax^2+by^2+cz^2):[bc(y-z)^2+ac(z-x)^2+ab(x-y)^2]\)

6 tháng 1 2021

\(\frac{x^2+y^2+z^2}{a^2+b^2+c^2}=\frac{x^2}{a^2}+\frac{y^2}{b^2}+\frac{z^2}{c^2}\)

\(\Leftrightarrow\left(\frac{x^2}{a^2}-\frac{x^2}{a^2+b^2+c^2}\right)+\left(\frac{y^2}{b^2}-\frac{y^2}{a^2+b^2+c^2}\right)+\left(\frac{z^2}{c^2}-\frac{z^2}{a^2+b^2+c^2}\right)=0\)

\(\Leftrightarrow\left(x^2.\frac{b^2+c^2}{a^2+b^2+c^2}\right)+\left(y^2.\frac{a^2+c^2}{a^2+b^2+c^2}\right)+\left(z^2.\frac{a^2+b^2}{a^2+b^2+c^2}\right)=0\)

Vì a,b,c khác 

=>Dấu bằng xảy ra khi x=y=z=0

\(\Rightarrow x^{2014}+y^{2015}+z^{2016}=0^{2014}+0^{2015}+0^{2016}=0\)

6 tháng 1 2017

a)Ta có: ab+ac+bc=-7                        (ab+ac+bc)^2=49

nên

(ab)^2+(bc)^2+(ac)^2=49

nên a^4+b^4+c^4=(a^2+b^2+c^2)^2−2(ab)^2−2(ac)^2−2(bc^)2=98

b) (x^2+y^2+z^2)/(a^2+b^2+c^2)= 
=x^2/a^2+y^2/b^2+z^2/c^2 <=> 
x^2+y^2+z^2=x^2+(a^2/b^2)y^2+ 
+(a^2/c^2)z^2+(b^2/a^2)x^2+y^2+ 
+(b^2/c^2)z^2+(c^2/a^2)x^2+ 
+(c^2/b^2)y^2+z^2 <=> 
[(b^2+c^2)/a^2]x^2+[(a^2+c^2)/b^2]y^2+ 
+[(a^2+b^2)/c^2]z^2 = 0 (*) 
Đặt A=[(b^2+c^2)/a^2]x^2; B=[(a^2+c^2)/b^2]y^2; 
và C=[(a^2+b^2)/c^2]z^2 
Vì a,b,c khác 0 nên suy ra A,B,C đều không âm 
Từ (*) ta có A+B+C=0 
Tổng 3 số không âm bằng 0 thì cả 3 số đều phải bằng 0,tức A=B=C=0 
Vì a,b,c khác 0 nên [(b^2+c^2)/c^2]>0 =>x^2=0 =>x=0 
Tương tự B=C=0 =>y^2=z^2=0 => y=z=0 
Vậy x^2011+y^2011+z^2011=0 
Và x^2008+y^2008+z^2008=0.

11 tháng 10 2017

hreury

    16 tháng 2 2018

    Ez z còn

    \(\frac{x^2+y^2+z^2}{a^2+b^2+c^2}=\frac{x^2}{a^2}+\frac{y^2}{b^2}+\frac{z^2}{c^2}\)

    \(\Leftrightarrow\left(\frac{x^2}{a^2+b^2+c^2}-\frac{x^2}{a^2}\right)+\left(\frac{y^2}{a^2+b^2+c^2}-\frac{y^2}{b^2}\right)+\left(\frac{z^2}{a^2+b^2+c^2}-\frac{z^2}{c^2}\right)=0\)

    \(\Leftrightarrow x^2\left(\frac{1}{a^2+b^2+c^2}-\frac{1}{a^2}\right)+y^2\left(\frac{1}{a^2+b^2+c^2}-\frac{1}{b^2}\right)+z^2\left(\frac{1}{a^2+b^2+c^2}-\frac{1}{c^2}\right)=0\)

    Tà thấy \(\frac{1}{a^2+b^2+c^2}-\frac{1}{a^2};\frac{1}{a^2+b^2+c^2}-\frac{1}{b^2};\frac{1}{a^2+b^2+c^2}-\frac{1}{c^2}>0\forall a;b;c\ne0\)

    \(\Rightarrow x^2\left(\frac{1}{a^2+b^2+c^2}-\frac{1}{a^2}\right);y^2\left(\frac{1}{a^2+b^2+c^2}-\frac{1}{b^2}\right);z^2\left(\frac{1}{a^2+b^2+c^2}-\frac{1}{c^2}\right)\ge0\forall a;b;c\ne0\)

    \(\Rightarrow x^2\left(\frac{1}{a^2+b^2+c^2}-\frac{1}{a^2}\right)+y^2\left(\frac{1}{a^2+b^2+c^2}-\frac{1}{b^2}\right)+z^2\left(\frac{1}{a^2+b^2+c^2}-\frac{1}{c^2}\right)\ge0\)

    Dấu "=" xảy ra \(\Leftrightarrow x=y=z=0\)

    \(\Rightarrow x^{2011}+y^{2011}+z^{2011}=0\)