K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 1 2020

\(\left(\frac{x^2}{a^2}-\frac{x^2}{a^2+b^2+c^2}\right)+\left(\frac{y^2}{b^2}-\frac{y^2}{a^2+b^2+c^2}\right)+\left(\frac{z^2}{c^2}-\frac{z^2}{a^2+b^2+c^2}\right)=0\)

\(\Leftrightarrow x^2\left(\frac{1}{a^2}-\frac{1}{a^2+b^2+c^2}\right)+y^2\left(\frac{1}{b^2}-\frac{1}{a^2+b^2+c^2}\right)+z^2\left(\frac{1}{c^2}-\frac{1}{a^2+b^2+c^2}\right)=0\left(1\right)\)

Vì: \(\frac{1}{a^2}-\frac{1}{a^2+b^2+c^2}>0\)

Và: \(\frac{1}{b^2}-\frac{1}{a^2+b^2+c^2}>0\)

Và: \(\frac{1}{c^2}-\frac{1}{a^2+b^2+c^2}>0\)

Nên từ \(\left(1\right)\Rightarrow x=y=z=0\)

\(\Rightarrow D=0\)

29 tháng 1 2018

x^2+y^2+z^2/a^2+b^2+c^2 = x^2/a^2 + y^2/b^2 + z^2/c^2

<=> x^2+y^2+z^2 = x^2.b^2/a^2 + x^2.c^a/a^2 + y^2.a^2/b^2 + y^2.c^2/b^2 + z^2.a^2/c^2 + z^2.b^2/c^2 + x^2 + y^2 + z^2

<=> x^2.b^2/a^2 + x^2.c^2/a^2 + y^2.a^2/b^2 + y^2.c^2/b^2 + z^2.z^2/c^2 + z^2.b^2/c^2 = 0 (1)

Ta thấy VT của (1) >= 0 = VP của (1) 

Dấu "=" xảy ra <=> x=y=z=0

Khi đó : x^2013+y^2013+z^2013/2012 = 0

Tk mk nha

1 tháng 2 2018

bn ơi bn trình bày hẳn ra đi, chỗ nào phân số mà tử là đa thức thì bn để trong ngoặc hộ mk

bài lm này mk đọc ko có hiểu

29 tháng 11 2019

mik đag cần gấp các bn giải nhanh dùm mik nha

24 tháng 2 2020

Cô ơi em có cách khác ạ :)

\(\frac{x^2+y^2+z^2}{a^2+b^2+c^2}=\frac{x^2}{a^2}+\frac{y^2}{b^2}+\frac{z^2}{c^2}\)

\(\Leftrightarrow x^2\left(\frac{1}{a^2}-\frac{1}{a^2+b^2+c^2}\right)+y^2\left(\frac{1}{b^2}-\frac{1}{a^2+b^2+c^2}\right)+z^2\left(\frac{1}{c^2}-\frac{1}{a^2+b^2+c^2}\right)=0\)

Dấu "=" xảy ra tại x=y=z=0

Khi đó T=0

23 tháng 2 2020

Ta có: 

\(\frac{x^2+y^2+z^2}{a^2+b^2+c^2}=\frac{x^2}{a^2}+\frac{y^2}{b^2}+\frac{z^2}{c^2}\)

<=> \(\left(a^2+b^2+c^2\right)\)\(\frac{x^2+y^2+z^2}{a^2+b^2+c^2}=\left(a^2+b^2+c^2\right)\left(\frac{x^2}{a^2}+\frac{y^2}{b^2}+\frac{z^2}{c^2}\right)\)

<=> \(x^2+y^2+z^2=\left(a^2+b^2+c^2\right)\frac{x^2}{a^2}+\left(a^2+b^2+c^2\right)\frac{y^2}{b^2}+\left(a^2+b^2+c^2\right)\frac{z^2}{c^2}\)

<=> \(\frac{\left(b^2+c^2\right)}{a^2}x^2+\frac{\left(a^2+c^2\right)}{b^2}y^2+\frac{\left(a^2+b^2\right)}{c^2}z^2=0\)

vì a, b , c khác 0 nên \(\frac{\left(b^2+c^2\right)}{a^2};\frac{\left(c^2+a^2\right)}{b^2};\frac{\left(b^2+a^2\right)}{c^2}\ne0\)

\(\frac{\left(b^2+c^2\right)}{a^2}x^2\ge0;\frac{\left(a^2+c^2\right)}{b^2}y^2\ge0;\frac{\left(a^2+b^2\right)}{c^2}z^2\ge0\)với mọi x, y, z

=> \(\frac{\left(b^2+c^2\right)}{a^2}x^2+\frac{\left(a^2+c^2\right)}{b^2}y^2+\frac{\left(a^2+b^2\right)}{c^2}z^2\ge0\)với mọi x; y; z

Do đó: \(\frac{\left(b^2+c^2\right)}{a^2}x^2+\frac{\left(a^2+c^2\right)}{b^2}y^2+\frac{\left(a^2+b^2\right)}{c^2}z^2=0\)

=> x = y = z = 0

Vậy T = 0 

7 tháng 2 2021

Ta có: \(\frac{x}{a}+\frac{y}{b}+\frac{z}{c}=1\Leftrightarrow\left(\frac{x}{a}+\frac{y}{b}+\frac{z}{c}\right)^2=1\)

\(\Leftrightarrow\frac{x^2}{a^2}+\frac{y^2}{b^2}+\frac{z^2}{c^2}+2\left(\frac{xy}{ab}+\frac{yz}{bc}+\frac{zx}{ca}\right)=1\)

\(\Leftrightarrow\frac{x^2}{a^2}+\frac{y^2}{b^2}+\frac{z^2}{c^2}+2\cdot\frac{xyc+yza+zxb}{abc}=1\)

Mà \(\frac{a}{x}+\frac{b}{y}+\frac{c}{z}=0\Leftrightarrow\frac{yza+zxb+xyc}{xyz}=0\)

\(\Rightarrow yza+zxb+xyc=0\)

\(\Rightarrow A=\frac{x^2}{a^2}+\frac{y^2}{b^2}+\frac{z^2}{c^2}=1\)

23 tháng 1 2017

Ta có \(\frac{x^2+y^2+z^2}{a^2+b^2+c^2}=\frac{x^2}{a^2}+\frac{y^2}{b^2}+\frac{z^2}{c^2}\)

\(\Leftrightarrow\frac{x^2}{a^2+b^2+c^2}+\frac{y^2}{a^2+b^2+c^2}+\frac{z^2}{a^2+b^2+c^2}=\frac{x^2}{a^2}+\frac{y^2}{b^2}+\frac{z^2}{c^2}\)

\(\Leftrightarrow\frac{x^2}{a^2+b^2+c^2}-\frac{x^2}{a^2}+\frac{y^2}{a^2+b^2+c^2}-\frac{y^2}{b^2}+\frac{z^2}{a^2+b^2+c^2}-\frac{z^2}{c^2}=0\)

\(\Leftrightarrow x^2\left(\frac{1}{a^2+b^2+c^2}-\frac{1}{a^2}\right)+y^2\left(\frac{1}{a^2+b^2+c^2}-\frac{1}{b^2}\right)+z^2\left(\frac{1}{a^2+b^2+c^2}-\frac{1}{c^2}\right)=0\)

Do \(\left\{\begin{matrix}\frac{1}{a^2+b^2+c^2}-\frac{1}{a^2}\\\frac{1}{a^2+b^2+c^2}-\frac{1}{b^2}\\\frac{1}{a^2+b^2+c^2}-\frac{1}{c^2}\end{matrix}\right.\ne0\)\(a,b,c\ne0\)

\(\Rightarrow\left\{\begin{matrix}x^2=0\\y^2=0\\z^2=0\end{matrix}\right.\)

\(\Rightarrow\left\{\begin{matrix}x=0\\y=0\\z=0\end{matrix}\right.\)

Ta có \(A=x^{2008}+y^{2008}+z^{2008}\)

\(\Rightarrow A=0+0+0\)

\(\Rightarrow A=0\)

Vậy A = 0

6 tháng 1 2017

a)Ta có: ab+ac+bc=-7                        (ab+ac+bc)^2=49

nên

(ab)^2+(bc)^2+(ac)^2=49

nên a^4+b^4+c^4=(a^2+b^2+c^2)^2−2(ab)^2−2(ac)^2−2(bc^)2=98

b) (x^2+y^2+z^2)/(a^2+b^2+c^2)= 
=x^2/a^2+y^2/b^2+z^2/c^2 <=> 
x^2+y^2+z^2=x^2+(a^2/b^2)y^2+ 
+(a^2/c^2)z^2+(b^2/a^2)x^2+y^2+ 
+(b^2/c^2)z^2+(c^2/a^2)x^2+ 
+(c^2/b^2)y^2+z^2 <=> 
[(b^2+c^2)/a^2]x^2+[(a^2+c^2)/b^2]y^2+ 
+[(a^2+b^2)/c^2]z^2 = 0 (*) 
Đặt A=[(b^2+c^2)/a^2]x^2; B=[(a^2+c^2)/b^2]y^2; 
và C=[(a^2+b^2)/c^2]z^2 
Vì a,b,c khác 0 nên suy ra A,B,C đều không âm 
Từ (*) ta có A+B+C=0 
Tổng 3 số không âm bằng 0 thì cả 3 số đều phải bằng 0,tức A=B=C=0 
Vì a,b,c khác 0 nên [(b^2+c^2)/c^2]>0 =>x^2=0 =>x=0 
Tương tự B=C=0 =>y^2=z^2=0 => y=z=0 
Vậy x^2011+y^2011+z^2011=0 
Và x^2008+y^2008+z^2008=0.