K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
13 tháng 8 2021

Lời giải:
Nếu $a+b+c+d=0$ thì $a+b+c=-d$

Khi đó: $P=\frac{-d}{d}=-1$

Nếu $a+b+c+d\neq 0$ thì áp dụng tính chất dãy tỉ số bằng nhau thì:

$\frac{a}{b}=\frac{b}{c}=\frac{c}{d}=\frac{d}{a}=\frac{a+b+c+d}{b+c+d+a}=1$

$\Rightarrow a=b=c=d$

$\Rightarrow P=\frac{d+d+d}{d}=\frac{3d}{d}=3$

15 tháng 8 2021

con cảm ơn ạ

 

2 tháng 10 2021

Áp dụng t/c dttsbn:

\(\dfrac{a+b+c-2020d}{d}=\dfrac{b+c+d-2020a}{a}=\dfrac{c+d+a-2020b}{b}=\dfrac{d+a+b-2020c}{c}=\dfrac{3\left(a+b+c+d\right)-2020\left(a+b+c+d\right)}{a+b+c+d}=-2017\)

\(\Rightarrow\left\{{}\begin{matrix}a+b+c-2020d=-2017d\\b+c+d-2020a=-2017a\\c+d+a-2020b=-2017b\\d+a+b-2020c=-2017c\end{matrix}\right.\\ \Rightarrow\left\{{}\begin{matrix}a+b+c=3d\\b+c+d=3a\\c+d+a=3b\\d+a+b=3c\end{matrix}\right.\Rightarrow a=b=c=d\)

\(F=\dfrac{a+b}{c+d}+\dfrac{b+c}{d+a}+\dfrac{c+d}{a+b}+\dfrac{a+d}{b+c}\\ F=\dfrac{a+a}{a+a}+\dfrac{a+a}{a+a}+\dfrac{a+a}{a+a}+\dfrac{a+a}{a+a}=4\)

 

 

26 tháng 2 2016

a/b+c+d =b/c+d+a=c/d+a+b=d/a+b+c

=>a+b+c+d/3(a+b+c+d)=1/3

có thể P=4

29 tháng 8 2021

anh đi anh nhớ quê nha 

nhớ canh rau muống nhớ cà dầm tương 

nhớ thằng đẩy bố xuống mương 

bố mà bắt được bố tương vỡ mồm

DD
29 tháng 10 2021

Bạn tham khảo câu hỏi tương tự. 

Câu hỏi của Đào Thị Lan Nhi - Toán lớp 7 - Học trực tuyến OLM

31 tháng 12 2019

Ta có : \(\frac{a}{b}=\frac{b}{c}=\frac{c}{d}=\frac{d}{a}=\frac{a+b+c+d}{b+c+d+a}=1\Rightarrow a=b=c=d\)

Khi đó P = \(\frac{2019a-b}{c+d}+\frac{2019b-c}{d+a}+\frac{2019c-d}{a+b}+\frac{2019d-a}{b+c}\)

\(=\frac{2019a-a}{2a}+\frac{2019b-b}{2b}+\frac{2019c-c}{2c}+\frac{2019d-d}{2d}\)

\(=1014+1014+1014+1014=1014.4=4056\)