K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 9 2018

1/a + 1/b + 1/c = 1/a+b+c => \(\frac{ab+bc+ac}{abc}\)\(\frac{1}{a+b+c}\)=> ( ab + bc + ac ) =abc  => a2b +ab+bc2+b2c+ac2+a2c +3abc = abc

=> a2b+ab2+bc2+ac2+a2c+b2c+abc+abc=0 . Sau đó,bạn phân tích được là : (a+c)(b+c)(a+b)=0 => a=-c hoặc a=-b hoặc b=-c

Vậy trong ba số a,b,c có hai số đối nhau(đpcm).

9 tháng 8 2019

Câu hỏi của Nguyễn Đa Vít - Toán lớp 9 - Học toán với OnlineMath

Em tham khảo phần sau tại link trên!

22 tháng 9 2019

chứng minh:(a+b+c)(1/a+1/b+1/c)<=10 nha mn. nhanh hộ mình

22 tháng 9 2019

Không mất tính tổng quát giả sử a≥b≥c\(\Rightarrow \left ( a-b \right )\left ( b-c \right )\geq 0\)

\(\Rightarrow ab+bc\geq b^{2}+ac\)

=>\(\frac{a}{c}+1\geq \frac{b}{c}+\frac{a}{b}\) ; \(\frac{c}{a}+1\geq \frac{b}{a}+\frac{c}{b}\)

=>\(\frac{a}{b}+\frac{b}{c}+\frac{c}{b}+\frac{b}{a}\leq \frac{a}{c}+\frac{c}{a}+2=>\frac{a}{b}+\frac{b}{c}+\frac{c}{a}+\frac{b}{a}+\frac{c}{b}+\frac{a}{c}\leq 2+2(\frac{a}{c}+\frac{c}{a})\)

Đặt \(x=\frac{a}{c},\)ta có 2 >= x >= 1 nên x + 1 /x <=5/2 => \(2 + 2 ( a/c + c/a)\)<= 7 => \(\frac{a}{b}+\frac{b}{c}+\frac{c}{a}+\frac{b}{a}+\frac{c}{b}+\frac{a}{c}\)<=7 => đpcm

22 tháng 6 2018

Ta chứng minh BĐT

( a + b + c ) ( 1 a + 1 b + 1 c ) ≥ 9 ( * ) ( * ) < = > 3 + ( a b + b a ) + ( b c + c b ) + ( c a + a c ) ≥ 9

Áp dụng BĐT Cô – si cho hai số dương ta có:

a b + b a ≥ 2 b c + c b ≥ 2 c a + a c ≥ 2 =>(*) đúng

 

= > 9 a + b + c ≤ 1 a + 1 b + 1 c ≤ 3 = > a + b + c ≥ 3

Trở lại bài toán: Áp dụng BĐT Cô si cho hai số dương ta có  1 + b 2 ≥ 2 b

Ta có: a 1 + b 2 = a − a b 2 1 + b 2 ≥ a − a b 2 2 b = a − a b 2 ( 1 )

 

Tương tự ta có: 

b 1 + c 2 ≥ b − b c 2 ( 2 ) c 1 + a 2 ≥ c − c a 2 ( 3 )

 

Cộng từng vế của (1), (2) và (3) ta có:

a 1 + b 2 + b 1 + c 2 + c 1 + a 2 ≥ a + b + c − 1 2 ( a b + b c + c a ) = > a 1 + b 2 + b 1 + c 2 + c 1 + a 2 + 1 2 ( a b + b c + c a ) ≥ a + b + c ≥ 3

 

4 tháng 2 2022

a) thay m=-1 ta được

\(\left\{{}\begin{matrix}x+y=0\\-x-y=0\end{matrix}\right.< =>\left\{{}\begin{matrix}x+y=0\\x+y=0\end{matrix}\right.\)

=> hpt vô nghiệm

b)hpt trên có vô số nghiệm <=>\(\dfrac{1}{m}=\dfrac{-m}{-1}=\dfrac{0}{m+1}\)(vô lí)

   hpt trên chỉ có nghiệm duy nhất<=>\(\dfrac{1}{m}\ne\dfrac{-m}{-1}\)

                                                     <=>\(\dfrac{1}{m}\ne\dfrac{m}{1}\)

                                                     <=>\(m^2\ne1< =>m\ne\pm1\left(đpcm\right)\)

 

4 tháng 2 2022

câu a là HPT vô số nghiệm nha

22 tháng 3 2017

Với ab = 1 , a + b ¹ 0, ta có:

P = a 3 + b 3 ( a + b ) 3 ( a b ) 3 + 3 ( a 2 + b 2 ) ( a + b ) 4 ( a b ) 2 + 6 ( a + b ) ( a + b ) 5 ( a b ) = a 3 + b 3 ( a + b ) 3 + 3 ( a 2 + b 2 ) ( a + b ) 4 + 6 ( a + b ) ( a + b ) 5 = a 2 + b 2 − 1 ( a + b ) 2 + 3 ( a 2 + b 2 ) ( a + b ) 4 + 6 ( a + b ) 4 = ( a 2 + b 2 − 1 ) ( a + b ) 2 + 3 ( a 2 + b 2 ) + 6 ( a + b ) 4 = ( a 2 + b 2 − 1 ) ( a 2 + b 2 + 2 ) + 3 ( a 2 + b 2 ) + 6 ( a + b ) 4 = ( a 2 + b 2 ) 2 + 4 ( a 2 + b 2 ) + 4 ( a + b ) 4 = ( a 2 + b 2 + 2 ) 2 ( a + b ) 4 = ( a 2 + b 2 + 2 a b ) 2 ( a + b ) 4 = ( a + b ) 2 2 ( a + b ) 4 = 1

Vậy P = 1, với ab = 1 , a+b ¹ 0.

Câu 1: 

b: Ta có: \(\left(2\sqrt{3}+\sqrt{5}\right)\cdot\sqrt{3}-\sqrt{60}\)

\(=6+\sqrt{15}-2\sqrt{15}\)

\(=6-\sqrt{15}\)

c: Ta có: \(\sqrt{\left(\sqrt{7}-4\right)^2}-\sqrt{28}\)

\(=4-\sqrt{7}-2\sqrt{7}\)

\(=4-2\sqrt{7}\)

3 tháng 11 2016

 cả 2 lớp có số học sinh là :

       22+23= 45 ( hs )

    đáp số 45 học sinh

3 tháng 11 2016

giải

cả hai lớp có số học sinh là :

23 + 22 = 45 ( học sinh )

Đáp số : 45 học sinh

19 tháng 2 2019

Giải bài tập Toán lớp 9 | Giải Toán lớp 9

a) Xét (d): y = -2x + 3 có a = -2; b = 3

(d’) : y = 3x – 1 có a’ = 3 ; b’ = -1.

Có a ≠ a’ ⇒ (d) cắt (d’)

⇒ Hệ Giải bài 4 trang 11 SGK Toán 9 Tập 2 | Giải toán lớp 9 có nghiệm duy nhất.

b) Giải bài tập Toán lớp 9 | Giải Toán lớp 9

Xét (d): Giải bài 4 trang 11 SGK Toán 9 Tập 2 | Giải toán lớp 9 có a = Giải bài 4 trang 11 SGK Toán 9 Tập 2 | Giải toán lớp 9 ; b = 3

(d’): Giải bài 4 trang 11 SGK Toán 9 Tập 2 | Giải toán lớp 9 có a’ = Giải bài 4 trang 11 SGK Toán 9 Tập 2 | Giải toán lớp 9 ; b’ = 1.

Có a = a’; b ≠ b’ ⇒ (d) // (d’)

⇒ Hệ phương trình Giải bài 4 trang 11 SGK Toán 9 Tập 2 | Giải toán lớp 9 vô nghiệm.

c) Ta có: Giải bài 4 trang 11 SGK Toán 9 Tập 2 | Giải toán lớp 9

Xét (d): y = Giải bài 4 trang 11 SGK Toán 9 Tập 2 | Giải toán lớp 9 x có a = Giải bài 4 trang 11 SGK Toán 9 Tập 2 | Giải toán lớp 9 ; b = 0

(d’) : y = Giải bài 4 trang 11 SGK Toán 9 Tập 2 | Giải toán lớp 9 x có a’ = Giải bài 4 trang 11 SGK Toán 9 Tập 2 | Giải toán lớp 9 ; b’ = 0

Ta có: a ≠ a’ ⇒ (d) cắt (d’)

⇒ Hệ Giải bài 4 trang 11 SGK Toán 9 Tập 2 | Giải toán lớp 9 có nghiệm duy nhất.

d) Ta có:

Giải bài 4 trang 11 SGK Toán 9 Tập 2 | Giải toán lớp 9

Ta có: a = a’=3; b = b’ = -3

Nhận thấy hai đường thẳng trên trùng nhau

⇒ Hệ phương trình có vô số nghiệm.

Kiến thức áp dụng

+ Xét hệ (I): Giải bài 4 trang 11 SGK Toán 9 Tập 2 | Giải toán lớp 9

Gọi (d): ax + by = c và (d’): a’x + b’y = c’.

Số nghiệm của hệ (I) phụ thuộc vào vị trí tương đối của (d) và (d’).

    (d) cắt (d’) ⇒ hệ (I) có nghiệm duy nhất.

    (d) // (d’) ⇒ hệ (I) vô nghiệm

    (d) ≡ (d’) ⇒ hệ (I) có vô số nghiệm.

+ Cho đường thẳng (d): y = ax + b và (d’): y = a’x + b’.

    (d) cắt (d’) ⇔ a ≠ a’

    (d) // (d’) ⇔ a = a’ và b ≠ b’

    (d) trùng (d’) ⇔ a = a’ và b = b’.