Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
từ giả thiết suy ra :
a2b - a3bc - b2c + ab2c2 = ab2 - ab3c - a2c + a2bc2
\(\Rightarrow\)ab ( a - b ) + c ( a2 - b2 ) = abc2 ( a - b ) + abc ( a2 - b2 )
\(\Rightarrow\)( a - b ) ( ab + ac + bc ) = abc ( a - b ) ( c + a + b )
chia 2 vế cho abc ( a - b ) \(\ne\)0
\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\frac{1}{abc}\Leftrightarrow\frac{ab+bc+ac}{abc}=\frac{1}{abc}\Leftrightarrow ab+bc+ac=1\)
\(A=\left(1+a^2\right)\left(1+b^2\right)\left(1+c^2\right)=\left(a+b\right)^2\left(b+c\right)^2\left(c+a\right)^2\)
\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\frac{1}{abc}\Leftrightarrow1=\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right).abc\Leftrightarrow1=bc+ac+ab\)
\(A=\left(bc+ac+ab+a^2\right)\left(bc+ac+ab+b^2\right)\left(bc+ac+ab+c^2\right)\)
\(A=\left[c\left(a+b\right)+a\left(a+b\right)\right]\left[c\left(a+b\right)+b\left(a+b\right)\right]\left[c\left(c+b\right)+a\left(c+b\right)\right]\)
\(A=\left(a+c\right)\left(a+b\right)\left(b+c\right)\left(a+b\right)\left(a+c\right)\left(b+c\right)\)
\(A=\left(a+b\right)^2\left(a+c\right)^2\left(b+c\right)^2\)
3/ Ta có:
\(x+y+z=0\)
\(\Rightarrow x^2=\left(y+z\right)^2;y^2=\left(z+x\right)^2;z^2=\left(x+y\right)^2\)
\(a+b+c=0\)
\(\Rightarrow a+b=-c;b+c=-a;c+a=-b\)
\(\frac{a}{x}+\frac{b}{y}+\frac{c}{z}=0\)
\(\Leftrightarrow ayz+bxz+cxy=0\)
Ta có:
\(ax^2+by^2+cz^2=a\left(y+z\right)^2+b\left(z+x\right)^2+c\left(x+y\right)^2\)
\(=x^2\left(b+c\right)+y^2\left(c+a\right)+z^2\left(a+b\right)+2\left(ayz+bzx+cxy\right)\)
\(=-ax^2-by^2-cz^2\)
\(\Leftrightarrow2\left(ax^2+by^2+cz^2\right)=0\)
\(\Leftrightarrow ax^2+by^2+cz^2=0\)
1/ Đặt \(a-b=x,b-c=y,c-z=z\)
\(\Rightarrow x+y+z=0\)
Ta có:
\(\frac{1}{\left(a-b\right)^2}+\frac{1}{\left(b-c\right)^2}+\frac{1}{\left(c-a\right)^2}=\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}\)
\(=\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}+\frac{2\left(x+y+z\right)}{xyz}\)
\(=\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}+2\left(\frac{1}{xy}+\frac{1}{yz}+\frac{1}{zx}\right)=\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)^2\)
Ta có:
\(a+b+c=\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\)
\(\Leftrightarrow abc^2+ab^2c+a^2bc-ab-bc-ca=0\left(1\right)\)
Ta cần chứng minh
\(b\left(a^2-bc\right)\left(1-ac\right)=a\left(1-bc\right)\left(b^2-ac\right)\)
\(\Leftrightarrow ab^2c^2-a^2bc^2+ab^3c-b^2c-a^3bc+a^2c-ab^2+a^2b=0\)
\(\Leftrightarrow b\left(abc^2+ab^2c-bc-ab\right)-a^2bc^2-a^3bc+a^2c+a^2b=0\)
\(\Leftrightarrow b\left(ac-a^2bc\right)-a^2bc^2-a^3bc+a^2c+a^2b=0\)
\(\Leftrightarrow-a\left(ab^2c+abc^2+a^2bc-bc-ac-ab\right)=0\)(theo (1) thì đúng)
\(\RightarrowĐPCM\)
a) Ta có : \(\frac{a+b}{c}=\frac{b+c}{a}=\frac{c+a}{b}\Leftrightarrow\frac{a+b}{c}+1=\frac{b+c}{a}+1=\frac{c+a}{b}+1\)
\(\Rightarrow\frac{a+b+c}{a}=\frac{a+b+c}{b}=\frac{a+b+c}{c}\)
- TH1: Nếu a + b + c = 0 \(\Rightarrow P=\frac{a+b}{b}.\frac{b+c}{c}.\frac{a+c}{a}=\frac{-c}{b}.\frac{-a}{c}.\frac{-b}{a}=\frac{-\left(abc\right)}{abc}=-1\)
- TH2 : Nếu \(a+b+c\ne0\) \(\Rightarrow a=b=c\)
\(\Rightarrow P=\left(1+1\right)\left(1+1\right)\left(1+1\right)=8\)
b) Đề bài sai ^^