K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 3 2017

\(\frac{a}{b}.\frac{a}{c}=\frac{a}{b}+\frac{a}{c}\)

Xét Hiệu : \(\frac{a}{b}.\frac{a}{c}-\left(\frac{a}{b}+\frac{a}{c}\right)\)

\(=\frac{a^2}{bc}-\frac{ac+ab}{bc}\)

\(=\frac{a^2}{bc}-\frac{a\left(c+b\right)}{bc}\)

\(=\frac{a^2}{bc}-\frac{a^2}{bc}\)  \(\left(c+b=a\right)\)

\(=0\)

\(\Rightarrow\frac{a}{b}.\frac{a}{c}=\frac{a}{b}+\frac{a}{c}\) (ĐPCM)

24 tháng 3 2017

Ta có:

\(VT=\frac{a}{b}.\frac{a}{c}=\frac{aa}{bc}=\frac{a^2}{bc}\)

\(VP=\frac{a}{b}+\frac{a}{c}=\frac{ac}{bc}+\frac{ab}{bc}=\frac{a\left(c+b\right)}{bc}=\frac{aa}{bc}=\frac{a^2}{bc}\)

\(\Rightarrow VT=VP\)

Vậy nếu \(c+b=a\) thì \(\frac{a}{b}.\frac{a}{c}=\frac{a}{b}+\frac{a}{c}\) (Đpcm)

21 tháng 7 2016

a) Vì a > b

=> a.n > b.n

=> a.n + a.b > b.n + a.b

=> a.(b + n) > b.(a + n)

=> a/b > a+n/b+n ( đpcm)

Câu b và c lm tương tự

20 tháng 8 2017

ta có

a,\(\frac{a}{b}< 1\Leftrightarrow a< b\Leftrightarrow a+m< b+m\)

vì \(a+m< b+m\)

nên \(\frac{a+m}{b+m}< 1\)

b,Ta có    \(a+b>1\Leftrightarrow a+m>b+m\)

Vì \(a+m>b+m\)

nên \(\frac{a+m}{b+m}>1\)

17 tháng 12 2019

Ta có : \(\frac{a}{b}=\frac{b}{c}\)
\(\Rightarrow\left(\frac{a}{b}\right)^2=\left(\frac{b}{c}\right)^2=\frac{ab}{bc}\)(Áp dụng tính chất a = b => a2 = b2 = ab)
\(\Rightarrow\frac{a^2}{b^2}=\frac{b^2}{c^2}=\frac{ab}{bc}\)
\(\Rightarrow\frac{a^2+b^2}{b^2+c^2}=\frac{a}{c}\)(Trừ khử b trên tử và dưới mẫu còn a/c)

8 tháng 8 2016

a) Nhân cả hai vế với b, ta có đpcm

b) Đề sai

c) Nhân cả hai vế với b, ta có đpcm

d) Bạn trên đã làm r , mình  k trình bày lại nữa

8 tháng 8 2016

d,

Đặt \(\frac{a}{b}=\frac{c}{d}=k\)

\(\Rightarrow\) \(a=k\times b\) ; \(c=k\times d\)

Ta có :

\(\frac{a^2}{b^2}=\frac{\left(k\times b\right)^2}{b^2}=\frac{k^2\times b^2}{b^2}=k^2\)                           (1)

\(\frac{c^2}{d^2}=\frac{\left(k\times d\right)^2}{d^2}=\frac{k^2\times d^2}{d^2}=k^2\)                            (2)

\(\frac{a^2+c^2}{b^2+d^2}=\frac{\left(k\times b\right)^2+\left(k\times d\right)^2}{b^2+d^2}=\frac{k^2\times b^2+k^2\times d^2}{b^2+d^2}=\frac{k^2\times\left(b^2+d^2\right)}{b^2+d^2}=k^2\)              (3)

Từ (1) ; (2) và (3) => \(\frac{a^2}{b^2}=\frac{c^2}{d^2}=\frac{a^2+c^2}{b^2+d^2}\)

7 tháng 7 2017

Ta có : \(\frac{a}{b}=\frac{c}{d}\)

Nên \(\frac{a}{c}=\frac{b}{d}=\frac{a-b}{c-d}\)

 Suy ra : \(\frac{a}{c}=\frac{a-b}{c-d}\)

Vậy : \(\frac{a-b}{a}=\frac{c-d}{c}\)

18 tháng 7 2017

Đặt \(\frac{a}{b}=\frac{c}{d}=k\)=>a=bk,c=dk

a,Ta có \(\frac{a-b}{a}-\frac{bk-b}{bk}=\frac{b\left(k-1\right)}{bk}\frac{k-1}{k}.1\)

Tương tự ta có \(\frac{c-d}{c}=\frac{k-1}{k}.2\)

Từ (1) và (2) suy ra đều phải chứng minh .

b,Ta có \(\frac{a+b}{c+d}=\frac{bk+b}{dk+d}=\frac{b\left(k+1\right)}{d\left(k+1\right)}=\frac{b}{d}.3\)

Tương tự ta có \(\frac{a-b}{c-b}=\frac{b}{d}.4\)

Từ (3) và (4) suy ra đều phải chứng minh

20 tháng 4 2020

Do \(a,b,c\in N^{\cdot}\)

\(\Rightarrow\frac{a}{a+b}>\frac{a}{a+b+c};\frac{b}{b+c}>\frac{b}{a+b+c};\frac{c}{c+a}>\frac{c}{a+b+c}\)

\(\Rightarrow1=\frac{a}{a+b+c}+\frac{b}{a+b+c}+\frac{c}{a+b+c}< \frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+a}\left(ĐPCM\right)\)

27 tháng 4 2019

\(\frac{a}{b}< \frac{c}{d}\)

\(ad< bc\)

\(2018ad< 2018bc\)

\(2018ad+cd< 2018bc+cd\)

\(\left(2018a+c\right)d< \left(2018b+d\right)c\)

\(\frac{2018a+c}{2018b+d}< \frac{c}{d}\)

Vậy \(\frac{2018a+c}{2018b+d}< \frac{c}{d}\) (ĐPCM)