Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: \(-1\le a,b,c\le2\Rightarrow a+1\ge0;a-2\le0\)
\(\Rightarrow\left(a+1\right)\left(a-2\right)\le0\)
\(\Leftrightarrow a^2-a-2\le0\Leftrightarrow a^2\le a+2\)
Tương tự:
\(b^2\le b+2\)
\(c^2\le c+2\)
Cộng vế theo vế, ta được:
\(a^2+b^2+c^2\le a+b+c+2+2+2=6\)
Vậy ta có đpcm
2) Ta có: Áp dụng bất đẳng thức:
\(xy\le\frac{\left(x+y\right)^2}{4}\) ta được:
\(\left(a+b-c\right)\left(b+c-a\right)\le\frac{\left(a+b-c+b+c-a\right)^2}{4}=\frac{4b^2}{4}=b^2\)
Tương tự chứng minh được:
\(\left(b+c-a\right)\left(a+c-b\right)\le c^2\)
\(\left(a+b-c\right)\left(a+c-b\right)\le a^2\)
Nhân vế 3 bất đẳng thức trên với nhau ta được:
\(\left[\left(a+b-c\right)\left(b+c-a\right)\left(c+a-b\right)\right]^2\le\left(abc\right)^2\)
\(\Rightarrow\left(a+b-c\right)\left(b+c-a\right)\left(c+a-b\right)\le abc\)
Dấu "=" xảy ra khi: \(a=b=c\)
2/ Không mất tính tổng quát, giả sử \(c=min\left\{a,b,c\right\}\).
Nếu abc = 0 thì có ít nhất một số bằng 0. Giả sử c = 0. BĐT quy về: \(a^2+b^2\ge2ab\Leftrightarrow\left(a-b\right)^2\ge0\) (luôn đúng)
Đẳng thức xảy ra khi a = b; c = 0.
Nếu \(abc\ne0\). Chia hai vế của BĐT cho \(\sqrt[3]{\left(abc\right)^2}\)
BĐT quy về: \(\Sigma_{cyc}\sqrt[3]{\frac{a^4}{b^2c^2}}+3\ge2\Sigma_{cyc}\sqrt[3]{\frac{ab}{c^2}}\)
Đặt \(\sqrt[3]{\frac{a^2}{bc}}=x;\sqrt[3]{\frac{b^2}{ca}}=y;\sqrt[3]{\frac{c^2}{ab}}=z\Rightarrow xyz=1\)
Cần chúng minh: \(x^2+y^2+z^2+3\ge2\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)\)
\(\Leftrightarrow x^2+y^2+z^2+2xyz+1\ge2\left(xy+yz+zx\right)\) (1)
Theo nguyên lí Dirichlet thì trong 3 số x - 1, y - 1, z - 1 tồn tại ít nhất 2 số có tích không âm. Không mất tính tổng quát, giả sử \(\left(x-1\right)\left(y-1\right)\ge0\)
\(\Rightarrow2xyz\ge2xz+2yz-2z\). Thay vào (1):
\(VT\ge x^2+y^2+z^2+2xz+2yz-2z+1\)
\(=\left(x-y\right)^2+\left(z-1\right)^2+2xy+2xz+2yz\)
\(\ge2\left(xy+yz+zx\right)\)
Vậy (1) đúng. BĐT đã được chứng minh.
Đẳng thức xảy ra khi a = b = c hoặc a = b, c = 0 và các hoán vị.
Check giúp em vs @Nguyễn Việt Lâm, bài dài quá:(
Để đưa về chứng minh $(1)$ và $(2)$ ta dùng:
Định lí SOS: Nếu \(X+Y+Z=0\) thì \(AX^2+BY^2+CZ^2\ge0\)
khi \(\left\{{}\begin{matrix}A+B+C\ge0\\AB+BC+CA\ge0\end{matrix}\right.\)
Chứng minh: Vì \(\sum\left(A+C\right)=2\left(A+B+C\right)\ge0\)
Nên ta có thể giả sử \(A+C\ge0\). Mà $X+Y+Z=0$ nên$:$
\(AX^2+BY^2+CZ^2=AX^2+BY^2+C\left[-\left(X+Y\right)\right]^2\)
\(={\frac { \left( AX+CX+CY \right) ^{2}}{A+C}}+{\frac {{Y}^{2} \left( AB+AC+BC \right) }{A+C}} \geq 0\)
Nguyễn Thị Ngọc Thơ, Nguyễn Việt Lâm, @No choice teen, @Trần Thanh Phương, @Akai Haruma
giúp e vs ạ! Cần gấp!
thanks nhiều!
Lời giải khác:
Áp dụng BĐT AM-GM:
$a^2+(b+c)^2=a^2+\frac{(b+c)^2}{4}+\frac{3(b+c)^2}{4}$
$\geq a(b+c)+\frac{3}{4}(b+c)^2$
$\Rightarrow \frac{a(b+c)}{a^2+(b+c)^2}\leq \frac{4a}{4a+3b+3c}$
Áp dụng BĐT Cauchy_Schwarz:
$\frac{4a}{4a+3b+3c}=\frac{4a}{a+\frac{a+b+c}{3}+...+\frac{a+b+c}{3}}\leq \frac{1}{100}.4a\left(\frac{1}{a}+\frac{3}{a+b+c}+...+\frac{3}{a+b+c}\right)$
$=\frac{1}{25}+\frac{27a}{25(a+b+c)}$
Tương tự với những phân thức còn lại và cộng theo vế:
$\Rightarrow \text{VT}\leq \frac{3}{25}+\frac{27}{25}=\frac{6}{5}$ (đpcm)
Dấu "=" xảy ra khi $a=b=c$