\(\in\)  Z thỏa mãn: a+b=c+d. Cmr a2+b2+c2+d
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 6 2016

\(a+b=c+d\Leftrightarrow a=c+d-b\Leftrightarrow a^2=b^2+c^2+d^2-2bc+2cd-2bd\Leftrightarrow a^2+b^2+c^2+d^2=\left(b^2-2bc+c^2\right)+\left(c^2+2cd+d^2\right)+\left(d^2-2bd+b^2\right)\Leftrightarrow a^2+b^2+c^2+d^2=\left(b-c\right)^2+\left(c+d\right)^2+\left(b-d\right)^2\)Vì a,b,c thuộc tập số nghuyên nên ta có điều phải chứng minh.

11 tháng 2 2018

VD: 1+3=2+2
12+32+22+22=18 không phải số cp
=> ĐỀ SAI

11 tháng 2 2018

mình cũng không biết nữa tại đề này thầy mình cho mình cũng thử nhiều lần thấy sai nên mới hỏi thử

25 tháng 10 2016

1) A=4*\(\frac{10^{2n}-1}{9}\)        B=\(2\cdot\frac{10^{n+1}-1}{9}\)         C=\(8\cdot\frac{10^n-1}{9}\)

đặt 10^n=X        => A+B+C+7=(4*x^2-4+2*10*x-2+8x-8+63)/9=(4x^2+28x+49)/9

=> A+B+C+7=\(\frac{\left(2x+7\right)^2}{3^2}\)

2)  = 4mn((m^2-1)-(n^2-1))=4mn(m+1)(m-1)-4mn(n-1)(n+1)

mà m,n nguyên => m-1,m,m+1 và n-1,n,n+1 là 3 số nguyên liên tiếp nên chia hết cho 6

do đó 4mn(m^2-n^2) chia hết 6*4=24

26 tháng 10 2016

Bài 2 ko đúng bn ak 6,4 không nguyên tố cùng nhau mà

30 tháng 1 2021

Sửa đề: \(\hept{\begin{cases}\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\frac{1}{2021}\\abc=2021\end{cases}}\) thì \(M=\left(1+a^2\right)\left(1+b^2\right)\left(1+c^2\right)\) là số chính phương

Ta có: \(\hept{\begin{cases}\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\frac{1}{2021}\\abc=2021\end{cases}}\Rightarrow\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\frac{1}{abc}\)

\(\Leftrightarrow\frac{ab+bc+ca}{abc}=\frac{1}{abc}\Rightarrow ab+bc+ca=1\left(abc\ne0\right)\)

Khi đó ta có: \(\hept{\begin{cases}1+a^2=ab+bc+ca+a^2=\left(a+b\right)\left(a+c\right)\\1+b^2=\left(b+c\right)\left(b+a\right)\\1+c^2=\left(c+a\right)\left(c+b\right)\end{cases}}\)

Nhân vế với vế ta được:

\(M=\left(1+a^2\right)\left(1+b^2\right)\left(1+c^2\right)=\left[\left(a+b\right)\left(b+c\right)\left(c+a\right)\right]^2\)

=> M là số chính phương

17 tháng 2 2018

1. cho các số thực dương x,y,z t/mãn: x2 + y2 + z2 = 1

Cmr: \(\frac{x}{y^2+z^2}\) + \(\frac{y}{x^2+z^2}+\frac{z}{x^2+y^2}\ge\) \(\frac{3\sqrt{3}}{2}\)

2. Cho x,y thỏa mãn \(\hept{\begin{cases}xy\ge0\\x^2+y^2=1\end{cases}}\)

Tìm GTNN,GTLN của \(S=x\sqrt{1+y}+y\sqrt{1+x}\)

3. Cho \(\hept{\begin{cases}xy\ne0\\xy\left(x+y\right)=x^2+y^2-xy\end{cases}}\)

Tìm GTLN của      \(A=\frac{1}{x^3}+\frac{1}{y^3}\)

4. Cho tam giác ABC; đường thẳng đi qua trọng tâm G và tâm đường tròn nội tiếp I vuông góc với đường phân giác trong của góc C. Gọi a,b,c là độ dài 3 canh tương ứng với 3 đỉnh A,B,C.

Cmr:  \(\frac{1}{a}+\frac{1}{b}\le\frac{2}{c}\)

26 tháng 2 2019

ui má. đúng mấy bài tập thầy tui cho ôn. giờ đang loay hoay

7 tháng 4 2017

\(a\ge b\Leftrightarrow a^2\ge b^2\Leftrightarrow a^2-b^2\ge0\)

\(c\ge d\Leftrightarrow c^2\ge d^2\Leftrightarrow c^2-d^2\ge0\)

\(-ab+ac\le0\)

\(-ad-cd\le0\)

\(-bc+bd\le0\)

\(\Rightarrow2\left(-ab+ac-ad-cd-bc+bd\right)\le0\)

\(\Rightarrow a^2-b^2+c^2-d^2\ge\left(a-b+c-d\right)^2\)

Bằng nhau khi và chỉ khi a = b = c = d

Dấu lớn xảy ra khi a> b >c > d

***Mình chẳng hiểu bài làm của mình đâu. Mong bạn thông cảm. Bạn mà hiểu được thì qủa là thiên tài limdim***********

20 tháng 7 2019

\(n^3+100=n^2.\left(n+10\right)-10n^2+100\)

\(=n^2.\left(n+10\right)-10n.\left(n+10\right)+100n+100\)

\(=n^2.\left(n+10\right)-10n.\left(n+10\right)+100.\left(n+10\right)-900\)

\(=\left(n+10\right).\left(n^2-10n+100\right)-900\)

Để n3+100 chia hết cho n+10 => -900 chia hết cho n+10 => n+10 thuộc Ư(900)

Vì n lớn nhất => n+10 lớn nhất => n+10=900 => n=890

Vậy n=890

20 tháng 7 2019

Xét a là một số tự nhiên bất kỳ. Dễ thấy, nếu a chia hết cho 3 => a3 chia hết cho 9 (1)

Xét: \(a\equiv1\left(mod9\right)\Rightarrow a^3\equiv1\left(mod9\right)\)(2)

\(a\equiv2\left(mod9\right)\Rightarrow a^3\equiv8\left(mod9\right)\)(3)

\(a\equiv4\left(mod9\right)\Rightarrow a^3\equiv64\equiv1\left(mod9\right)\)(4)

\(a\equiv5\left(mod9\right)\Rightarrow a^3\equiv125\equiv8\left(mod9\right)\)(5)

\(a\equiv7\left(mod9\right)\Rightarrow a^3\equiv343\equiv1\left(mod9\right)\)(6)

\(a\equiv8\left(mod9\right)\Rightarrow a^3\equiv512\equiv8\left(mod9\right)\)(7)

Từ (1),(2),(3),(4),(5),(6),(7) => lập phương của 1 số nguyên bất kỳ khi chia cho 9 có số dư là 0,1,8

Dễ thấy: để a3+b3+c3 chia hết cho 9 => 1 trong 3 số a,b,c hoặc cả 3 số a,b,c phải chia hết cho 3 => 

=> abc chia hết cho 3. Vậy a3+b3+c3 chia hết cho 9 thì abc chia hết cho 3