\(\in\) N* và S=\(\dfrac{a+b}{c}+\dfrac{b+c}{a}\dfrac{c+a}...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 5 2017

a)\(S=\dfrac{a+b}{c}+\dfrac{b+c}{a}+\dfrac{c+a}{b}=\left(\dfrac{a}{c}+\dfrac{c}{a}\right)+\left(\dfrac{b}{a}+\dfrac{a}{b}\right)+\left(\dfrac{c}{b}+\dfrac{b}{c}\right)\)

Áp dụng BĐT cosi:

\(\dfrac{a}{c}+\dfrac{c}{a}\ge2\sqrt{\dfrac{ac}{ca}}=2\)

\(\dfrac{a}{b}+\dfrac{b}{c}\ge2\)

\(\dfrac{b}{c}+\dfrac{c}{b}\ge2\)

=>S\(\ge\)6

Dấu = xảy ra khi và chỉ khi \(\left\{{}\begin{matrix}\dfrac{a}{c}=\dfrac{c}{a}\\\dfrac{a}{b}=\dfrac{b}{a}\\\dfrac{c}{b}=\dfrac{b}{c}\end{matrix}\right.\)<=>a=b=c

b)S\(\ge\)6

=>GTNN của S=6 xảy ra khi a=b=c

31 tháng 3 2018

* Chứng minh tổng hai phân số dương nghịch đảo lớn hơn hoặc bằng 2 : 

Cho phân số : \(\frac{a}{b}\)  \(\left(a,b\inℕ^∗\right)\)

\(\Rightarrow\)\(\frac{a}{b}+\frac{b}{a}-2=\frac{a^2}{ab}+\frac{b^2}{ab}-\frac{2ab}{ab}=\frac{a^2+b^2-2ab}{ab}=\frac{\left(a-b\right)^2}{ab}\ge0\)

Do đó : 

\(\frac{a}{b}+\frac{b}{a}-2\ge0\)\(\Rightarrow\)\(\frac{a}{b}+\frac{b}{a}\ge2\) ( điều phải chứng minh ) 

Vậy \(\frac{a}{b}+\frac{b}{a}\ge2\)

Chúc bạn học tốt ~ 

31 tháng 3 2018

\(a)\) Ta có : 

\(S=\frac{a+b}{c}+\frac{b+c}{a}+\frac{c+a}{b}\)

\(S=\frac{a}{c}+\frac{b}{c}+\frac{b}{a}+\frac{c}{a}+\frac{c}{b}+\frac{a}{b}\)

\(S=\left(\frac{a}{c}+\frac{c}{a}\right)+\left(\frac{b}{c}+\frac{c}{b}\right)+\left(\frac{b}{a}+\frac{a}{b}\right)\)

Vì tổng của hai phân số nguyên dương nghịch đảo sẽ luôn lớn hơn hoặc bằng 2 nên ta được : 

\(\hept{\begin{cases}\frac{a}{c}+\frac{c}{a}\ge2\\\frac{b}{c}+\frac{c}{b}\ge2\\\frac{b}{a}+\frac{a}{b}\ge2\end{cases}}\)

Cộng theo vế ba đẳng thức trên ta có : 

\(\frac{a}{c}+\frac{c}{a}+\frac{b}{c}+\frac{c}{b}+\frac{b}{a}+\frac{a}{b}\ge2+2+2\)

\(\Leftrightarrow\)\(\frac{a+b}{c}+\frac{b+c}{a}+\frac{c+a}{b}\ge6\)

\(\Leftrightarrow\)\(S\ge6\)

Vậy \(S\ge6\)

\(b)\) Vì \(S\ge6\) nên \(S_{min}=6\) khi \(a=b=c\)

Chúc bạn học tốt ~ 

7 tháng 4 2017

Đề có bị sao không vậy? \(S\) không thể bằng \(2\) Sửa đề:

Chứng minh rằng \(S\ge6\)

Giải:

Ta có:

\(S=\dfrac{a+b}{c}+\dfrac{b+c}{a}+\dfrac{a+c}{b}\)

\(=\left(\dfrac{a}{c}+\dfrac{b}{c}\right)+\left(\dfrac{b}{a}+\dfrac{c}{a}\right)+\left(\dfrac{a}{b}+\dfrac{c}{b}\right)\)

\(=\left(\dfrac{a}{c}+\dfrac{c}{a}\right)+\left(\dfrac{b}{c}+\dfrac{c}{b}\right)+\left(\dfrac{b}{a}+\dfrac{a}{b}\right)\)

\(\Rightarrow S\ge2+2+2=6\)

Vậy \(S\ge6\) (Đpcm)

7 tháng 4 2017

đề k bị sao bn ơi

15 tháng 3 2017

mô đây , đi hc thêm à chớ bài thầy hải ko có hay BDHSG

15 tháng 3 2017

Này #Edogawa Conan, đây là chỗ học chứ không phải chỗ ddeerr đăng linh tinh đâu. Bạn ko nghe cô Thủy nói à? Lần 1 cảnh cáo, lần 2 khóa nick đó. Thế nên đừng có đăng mấy cái ko liên quan tới chủ đề.

4 tháng 4 2019

\(a,S=\left[\frac{a}{c}+\frac{b}{c}\right]+\left[\frac{b}{c}+\frac{c}{a}\right]+\left[\frac{c}{b}+\frac{a}{b}\right]\)

\(S=\left[\frac{a}{c}+\frac{c}{a}\right]+\left[\frac{b}{c}+\frac{c}{b}\right]+\left[\frac{b}{a}+\frac{a}{b}\right]\)

\(S\ge2+2+2=6\)

\(b,GTNN\)của \(S=6\Leftrightarrow a=b=c\inℕ\)

A) TÌM X, BIẾT: \(\left(\dfrac{1}{1.101}+\dfrac{1}{2.102}+...+\dfrac{1}{10.110}\right).x=\dfrac{1}{1.11}+\dfrac{1}{2.12}+...+\dfrac{1}{100.110}\) B) CHỨNG TỎ RẰNG: a/ \(S=\dfrac{1}{5}+\dfrac{1}{13}+\dfrac{1}{14}+\dfrac{1}{15}+\dfrac{1}{61}+\dfrac{1}{62}+\dfrac{1}{63}< \dfrac{1}{2}\) b/ \(S=\dfrac{1}{41}+\dfrac{1}{42}+...+\dfrac{1}{80}>\dfrac{7}{12}\) c/ \(S=\dfrac{1}{2}+\dfrac{1}{2^2}+\dfrac{1}{2^3}+...+\dfrac{1}{2^{20}}< 1\) d/ \(\dfrac{49}{100}<...
Đọc tiếp

A) TÌM X, BIẾT:

\(\left(\dfrac{1}{1.101}+\dfrac{1}{2.102}+...+\dfrac{1}{10.110}\right).x=\dfrac{1}{1.11}+\dfrac{1}{2.12}+...+\dfrac{1}{100.110}\)

B) CHỨNG TỎ RẰNG:

a/ \(S=\dfrac{1}{5}+\dfrac{1}{13}+\dfrac{1}{14}+\dfrac{1}{15}+\dfrac{1}{61}+\dfrac{1}{62}+\dfrac{1}{63}< \dfrac{1}{2}\)

b/ \(S=\dfrac{1}{41}+\dfrac{1}{42}+...+\dfrac{1}{80}>\dfrac{7}{12}\)

c/ \(S=\dfrac{1}{2}+\dfrac{1}{2^2}+\dfrac{1}{2^3}+...+\dfrac{1}{2^{20}}< 1\)

d/ \(\dfrac{49}{100}< S=\dfrac{1}{2^2}+\dfrac{1}{3^2}+\dfrac{1}{4^2}+...+\dfrac{1}{99^2}< 1\)

C)

a/ Tìm giá trị lớn nhất của các biểu thức sau, đồng thời tìm x để các biểu thức này đạt giá trị lớn nhất:

\(A=2018-\left|10-x\right|\)

\(B=1999-\left(x+2\right)^2\)

b) Tìm giá trị nhỏ nhất của các biểu thức sau, đồng thời tìm x để các biểu thức này đạt giá trị nhỏ nhất:

\(A=\left(2x-8\right)^2+3\)

\(B=\left|x^2-25\right|-2017\)

1

Câu 3: 

a: \(A=-\left|x-10\right|+2018< =2018\)

Dấu '=' xảy ra khi x=10

\(B=-\left(x+2\right)^2+1999< =1999\)

Dấu '=' xảy ra khi x=-2

b: \(A=\left(2x-8\right)^2+3>=3\)

Dấu '=' xảy ra khi x=4

\(B=\left|x^2-25\right|-2017>=-2017\)

Dấu '=' xảy ra khi x=5 hoặc x=-5

24 tháng 6 2017

\(\dfrac{b}{c}=\dfrac{3}{4}\)

18 tháng 5 2015

a) \(S=\left(\frac{a}{c}+\frac{b}{c}\right)+\left(\frac{b}{a}+\frac{c}{a}\right)+\left(\frac{c}{b}+\frac{a}{b}\right)\)

\(\Leftrightarrow S=\left(\frac{a}{c}+\frac{c}{a}\right)+\left(\frac{b}{c}+\frac{c}{b}\right)+\left(\frac{b}{a}+\frac{a}{b}\right)\)

Tổng của hai phân số dương nghịch đảo bao giờ cũng lớn hơn hoặc bằng 2 nên :

\(\frac{a}{c}+\frac{c}{a}\ge2\)  ;   \(\frac{b}{c}+\frac{c}{b}\ge2\)   ;    \(\frac{b}{a}+\frac{a}{b}\ge2\)

\(\Rightarrow S\ge2+2+2=6\)

b) \(S\ge6\) nên GTNN của S là 6 ( \(\Leftrightarrow\) a = b =c )

18 tháng 5 2015

a] Ta có : \(S=\left(\frac{a}{c}+\frac{b}{c}\right)+\left(\frac{b}{a}+\frac{c}{a}\right)+\left(\frac{c}{b}+\frac{a}{b}\right)\)\(S=\left(\frac{a}{c}+\frac{c}{a}\right)+\left(\frac{b}{c}+\frac{c}{b}\right)+\left(\frac{b}{a}+\frac{a}{b}\right)\)

\(\Rightarrow S\ge2+2+2=6\)

b] Ta có \(S=6\Leftrightarrow a=b=c\)

GTNN của S =6

5 tháng 3 2017

choáng

10 tháng 9 2017

dài quá mik ko làm âu

20 tháng 3 2016

= 6 nha bạn

20 tháng 3 2016

bạn giải rõ cho mình với...mình cầu xin bạn đó Nguyễn Thị Hương