Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
Áp dụng BĐT Bunhiacopxky ta có:
\((a^2+2c^2)(1+2)\geq (a+2c)^2\)
\(\Rightarrow \sqrt{a^2+2c^2}\geq \frac{a+2c}{\sqrt{3}}\)
\(\Rightarrow \frac{\sqrt{a^2+2c^2}}{ac}\geq \frac{a+2c}{\sqrt{3}ac}=\frac{ab+2bc}{\sqrt{3}abc}\)
Hoàn toàn tương tự: \(\left\{\begin{matrix} \frac{\sqrt{c^2+2b^2}}{bc}\geq \frac{ac+2ab}{\sqrt{3}abc}\\ \frac{\sqrt{b^2+2a^2}}{ab}\geq \frac{bc+2ac}{\sqrt{3}abc}\end{matrix}\right.\)
Cộng theo vế các BĐT trên thu được:
\(\text{VT}\geq \frac{1}{\sqrt{3}}.\frac{ab+2bc+ac+2ab+bc+2ac}{abc}=\frac{1}{\sqrt{3}}.\frac{3(ab+bc+ac)}{abc}=\frac{1}{\sqrt{3}}.\frac{3abc}{abc}=\sqrt{3}\)
Ta có đpcm
Dấu bằng xảy ra khi $a=b=c=3$
Bài 2: Bài này sử dụng pp xác định điểm rơi thôi.
Áp dụng BĐT AM-GM ta có:
\(24a^2+24.(\frac{31}{261})^2\geq 2\sqrt{24^2.(\frac{31}{261})^2a^2}=\frac{496}{87}a\)
\(b^2+(\frac{248}{87})^2\geq 2\sqrt{(\frac{248}{87})^2.b^2}=\frac{496}{87}b\)
\(93c^2+93.(\frac{8}{261})^2\geq 2\sqrt{93^2.(\frac{8}{261})^2c^2}=\frac{496}{87}c\)
Cộng theo vế:
\(B+\frac{248}{29}\geq \frac{496}{87}(a+b+c)=\frac{496}{87}.3=\frac{496}{29}\)
\(\Rightarrow B\geq \frac{496}{29}-\frac{248}{29}=\frac{248}{29}\)
Vậy \(B_{\min}=\frac{248}{29}\). Dấu bằng xảy ra khi: \((a,b,c)=(\frac{31}{261}; \frac{248}{87}; \frac{8}{261})\)
Lời giải:
Áp dụng BĐT Bunhiacopxky:
\((a+b\sqrt{3}+c\sqrt{5})^2\leq (a^2+b^2+c^2)(1+3+5)\)
\(\Leftrightarrow (a+b\sqrt{3}+c\sqrt{5})^2\leq 9\Rightarrow a+b\sqrt{3}+c\sqrt{5}\leq 3\)
(đpcm)
Dấu "=" xảy ra khi \(\frac{a}{1}=\frac{b}{\sqrt{3}}=\frac{c}{\sqrt{5}}\) hay \(a=\frac{1}{3}; b=\sqrt{\frac{1}{3}}; c=\sqrt{\frac{5}{9}}\)
\(A=1-cos^2x+2cosx+1=3-\left(cosx-1\right)^2\le3\)
\(A_{max}=3\) khi \(cosx=1\)
\(B=1-sin^2x-2sin^2x-3=-1-\left(sinx+1\right)^2\le-1\)
\(B_{max}=-1\) khi \(sinx=-1\)
\(A=\sqrt{\frac{1}{2}+\frac{1}{2}\sqrt{\frac{1}{2}+\frac{1}{2}\sqrt{\frac{1}{2}+\frac{1}{2}\left(2cos^2\frac{x}{2}-1\right)}}}\)
\(=\sqrt{\frac{1}{2}+\frac{1}{2}\sqrt{\frac{1}{2}+\frac{1}{2}\sqrt{cos^2\frac{x}{2}}}}=\sqrt{\frac{1}{2}+\frac{1}{2}\sqrt{\frac{1}{2}+\frac{1}{2}cos\frac{x}{2}}}\)
\(=\sqrt{\frac{1}{2}+\frac{1}{2}\sqrt{\frac{1}{2}+\frac{1}{2}\left(2cos^2\frac{x}{4}-1\right)}}\)
\(=\sqrt{\frac{1}{2}+\frac{1}{2}\sqrt{cos^2\frac{x}{4}}}=\sqrt{\frac{1}{2}+\frac{1}{2}cos\frac{x}{4}}\)
\(=\sqrt{\frac{1}{2}+\frac{1}{2}\left(2cos^2\frac{x}{8}-1\right)}=\sqrt{cos^2\frac{x}{8}}=cos\frac{x}{8}\)
\(B=\sqrt{2+\sqrt{2+\sqrt{2+2\left(2cos^2\frac{a}{2}-1\right)}}}\)
\(=\sqrt{2+\sqrt{2+\sqrt{4cos^2\frac{a}{2}}}}=\sqrt{2+\sqrt{2+2cos\frac{a}{2}}}\)
\(=\sqrt{2+\sqrt{2+2\left(cos^2\frac{a}{4}-1\right)}}=\sqrt{2+\sqrt{4cos^2\frac{a}{4}}}\)
\(=\sqrt{2+2cos\frac{a}{4}}=\sqrt{2+2\left(2cos^2\frac{a}{8}-1\right)}=2cos\frac{a}{8}\)
$\sum \sqrt{\frac{ab+2c^2}{1+ab-c^2}}\geq ab+bc+ca+2$ - Bất đẳng thức và cực trị - Diễn đàn Toán học
\(GT\Rightarrow\left(a+b+c\right)^2=3+2\left(ab+bc+ca\right)\ge3\Rightarrow a+b+c\ge\sqrt{3}\)Dấu bằng xảy ra \(\Leftrightarrow\) 2 số =0, 1 số =\(\sqrt{3}\)
Bài 1:
Đk:\(x\ge\frac{1}{2}\)
Đặt \(\sqrt{2x-1}=t\Rightarrow2x=t^2+1\)
\(pt\Leftrightarrow\left(t^2+1\right)^2-8\left(t^2+4\right)t=7-22\left(t^2+1\right)\)
\(\Leftrightarrow t^4-8t^3+24t^2-32t+16=0\)
\(\Leftrightarrow\left(t-2\right)^4=0\Leftrightarrow t=2\Leftrightarrow\sqrt{2x-1}=2\)
\(\Leftrightarrow2x-1=4\Leftrightarrow2x=5\Leftrightarrow x=\frac{5}{2}\) (thỏa mãn)
Bài 2:
Cộng 2 vế với \(7x^2+23x+12\) ta được:
\(\left(x+2\right)^3+\left(x+2\right)=\left(7x^2+23x+12\right)+\sqrt[3]{7x^2+23x+12}\)
\(\Leftrightarrow\left(x+2\right)^3=7x^2+23x+12\)
\(\Leftrightarrow x^3+6x^2+12x+8=7x^2+23x+12\)
\(\Leftrightarrow\left(x-4\right)\left(x^2+3x+1\right)=0\)
\(\Leftrightarrow\left[\begin{matrix}x=4\\x=\frac{\sqrt{5}-3}{2}\end{matrix}\right.\) (thỏa mãn)
1: \(\Leftrightarrow a\sqrt{a}+b\sqrt{b}>=\sqrt{ab}\left(\sqrt{a}+\sqrt{b}\right)\)
=>\(\left(\sqrt{a}+\sqrt{b}\right)\left(a-\sqrt{ab}+b-\sqrt{ab}\right)>=0\)
=>\(\left(\sqrt{a}+\sqrt{b}\right)\left(\sqrt{a}-\sqrt{b}\right)^2>=0\)(luôn đúng)