\(abc\ge1\)CMR

\(27\left(a^3+a^2+a+1\...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 6 2020

Chứng minh cái này đi: \(\frac{a^3+a^2+a+1}{a^2+a+1}\ge\frac{2}{3}a+\frac{2}{3}\) ( gợi ý: bđt \(\Leftrightarrow\)\(\left(a-1\right)^2\left(a+1\right)\ge0\)

Tương tự với 2 ẩn kia \(\Rightarrow\)\(\Sigma\frac{a^3+a^2+a+1}{a^2+a+1}\ge\frac{8}{27}\Pi\left(a+1\right)\ge\frac{64}{27}\sqrt{abc}\ge\frac{64}{27}\)

dấu "=" xảy ra khi \(a=b=c=1\)

12 tháng 8 2020

Bất đẳng thức sai với [a = 35/256, b = 5/16, c = 3921/1840 ]

7 tháng 8 2017

3/ b/

TH 1: Trong 3 số \(\left(a+b-c\right);\left(b+c-a\right);\left(c+a-b\right)\)có 1 số âm hoặc 3 số đều âm thì BĐT đúng. (Thật ra không xảy ra được trường hợp cả 3 số đều âm đâu cứ ghi cho vui thôi).

TH 2: Trong 3 số \(\left(a+b-c\right);\left(b+c-a\right);\left(c+a-b\right)\)có 2 số âm

Giả sử 2 số âm đó là \(\left(a+b-c\right);\left(b+c-a\right)\)

\(\Rightarrow a+b-c+b+c-a=2b< 0\)trái đề bài. Nên không thể cùng lúc 2 số đều âm.

TH 3: Cả 3 số \(\left(a+b-c\right);\left(b+c-a\right);\left(c+a-b\right)\)đều dương

Ta có:

\(\sqrt{\left(a+b-c\right)\left(b+c-a\right)}\le\dfrac{a+b-c+b+c-a}{2}=b\left(1\right)\)

Tương tự ta có:

\(\left\{{}\begin{matrix}\sqrt{\left(a+b-c\right)\left(c+a-b\right)}\le a\left(2\right)\\\sqrt{\left(b+c-a\right)\left(c+a-b\right)}\le c\left(3\right)\end{matrix}\right.\)

Nhân (1), (2), (3) vế theo vế ta được

\(\left(a+b-c\right)\left(b+c-a\right)\left(a+c-b\right)\le abc\)

Vậy ta có ĐPCM

7 tháng 8 2017

3/ c/ Sửa đề thành a,b,c là 3 cạnh của tam giác nhé.

Ta cần chứng minh

\(a^3+b^3+c^3+2abc< a^2\left(b+c\right)+b^2\left(c+a\right)+c^2\left(a+b\right)\)

\(\Leftrightarrow\left[ab^2+ac^2-a^3\right]+\left[ba^2+bc^2-b^3\right]+\left[ca^2+cb^2-c^3\right]>2abc\)

\(\Leftrightarrow\dfrac{b^2+c^2-a^2}{2bc}+\dfrac{c^2+a^2-b^2}{2ca}+\dfrac{a^2+b^2-c^2}{2ab}-1>0\)

\(\Leftrightarrow\dfrac{\left(a+b-c\right)\left(b+c-a\right)\left(c+a-b\right)}{2abc}>0\) (đúng)

2 câu còn lại thì câu 1 sai rõ quá rồi bỏ qua. Còn câu 3a thì để t xem thử có sửa được đề không t làm nốt sau nhé. Giờ bận rồi.

3 tháng 8 2017

Bạn chứng minh đẳng thức sau nhé:  \(x^3+y^3+z^3-3xyz=\left(x+y+z\right)\left(x^2+y^2+z^2-xy-yz-zx\right)\)                                                                                                \(=\frac{1}{2}\left(x+y+z\right)\left[\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2\right]\)

Bạn nhìn thử xem cái ta đi chứng minh có giống với giả thiết của đề bài ko. Giả sử đặt ab=x, bc=y, ac=z.

Khi đó \(x^3+y^3+z^3=3xyz\Rightarrow x^3+y^3+z^3-3xyz=0\)

Do đó xảy ra 2 trường hợp: x+y+z=0 hoặc \(\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2=0\)

Vì a,b,c là các số thực dương nên \(x+y+z\ne0\)do đó \(\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2=0\)

Suy ra: x=y=z hay ab=bc=ac hay a=b=c.

Từ đó suy ra điều phải chứng minh. Có gì thắc mắc liên hệ với mình nha.


 

13 tháng 8 2017

4) Ta có : A=(a+b+c+d)(a-b-c+d)=(a-b+c-d)(a+b-c-d)

=> (a+d)2 - (b+c)2= (a-d)2 - (c-b)2

=> a2+ d2+ 2ad - b2- c2- 2bc=a2 + d2 - 2ad - c2-b2+2bc

Rút gọn ta được: 4ad = 4bc => ad = bc =>\(\dfrac{a}{c}=\dfrac{b}{d}\)

13 tháng 8 2017

1) a2+b2+c2+3=2(a+b+c) =>(a-1)2+(b-1)2+(c-1)2=0

=> a-1=b-1=c-1=0 => a=b=c=1 =>đpcm

10 tháng 12 2017

Ta có \(ab+bc+ca\ge3\sqrt[3]{a^2b^2c^2}\)\(\Rightarrow3\sqrt[3]{a^2b^2c^2}\le3\Leftrightarrow abc\le1\)

\(\Rightarrow\)\(\frac{1}{1+a^2\left(b+c\right)}\le\frac{1}{abc+a^2\left(b+c\right)}\)\(=\frac{1}{a\left(ab+bc+ca\right)}=\frac{1}{3a}\)

\(CMTT\Rightarrow\frac{1}{1+b^2\left(c+a\right)}\le\frac{1}{3b}\)

                  \(\frac{1}{1+c^2\left(a+b\right)}\le\frac{1}{3c}\)

\(\Rightarrow VT\le\frac{1}{3a}+\frac{1}{3b}+\frac{1}{3c}\)\(=\frac{ab+bc+ca}{3abc}=\frac{1}{abc}\)

a) \(A=\left(3x+1\right)^2-2\left(3x+1\right)\left(3x+5\right)+\left(5x+5\right)^2\)

\(A=\left[\left(3x+1\right)-\left(5x+5\right)\right]^2\)

\(A=\left(-2x-4\right)^2\)

30 tháng 9 2017

A = (3x + 1)2 - 2(3x + 1)(5x + 5) + (5x + 5)2

= [(3x + 1)-(5x + 5)]2

= (3x + 1 - 5x - 5)2

= [(-2x) - 4]2

B = (3 + 1)(32 + 1)(34 + 1)(38 + 1)(316 +1)(332 + 1)

=> (3 - 1)B = (3 - 1)(3 + 1)(32 + 1)(34 + 1)(38 + 1)(316 +1)(332 + 1)

=>2B = (32 - 1)(32 + 1)(34 + 1)(38 + 1)(316 +1)(332 + 1)

= (34 - 1)(34 + 1)(38 + 1)(316 +1)(332 + 1)

= (38 - 1)(38 + 1)(316 +1)(332 + 1)

= (316 - 1)316 +1)(332 + 1)

= (332 - 1)(332 + 1)

= 364 - 1

vì 2B = 364 - 1

=> B = \(\dfrac{3^{64}-1}{2}\)

C = a2 + b2 + c2 + 2ab - 2ac - 2bc + a2 + b2 + c2 - 2ab + 2ac - 2bc - 2( b2 - 2bc + c2)

= 2a2 + 2b2 + 2c2 - 4bc - 2b2 + 4bc - 2c2

= 2a2

29 tháng 1 2019

Mẫu bài này khó khử ~v

Ta có: \(\frac{1}{a^3\left(b+c\right)}+\frac{a^3\left(b+c\right)}{4}\ge2\sqrt{\frac{1}{a^3\left(b+c\right)}.\frac{a^3\left(b+c\right)}{4}}=2.\frac{1}{2}=1\)

Thiết lập hai BĐT còn lại tương tự và cộng theo vế,ta có:

\(VT+\frac{\left[a^3\left(b+c\right)+b^3\left(a+c\right)+c^3\left(a+b\right)\right]}{4}\ge3\) (*)

Ta sẽ c/m: \(a^3\left(b+c\right)+b^3\left(a+c\right)+c^3\left(a+b\right)\ge6\) (**)

Thật vậy,áp dụng BĐT Cô si,ta có: \(VT_{\left(^∗^∗\right)}\ge2a^2.a\sqrt{bc}+2b^2.b\sqrt{ac}+2c^2.c\sqrt{ab}\) 

\(=2a^2\sqrt{abc.a}+2b^2\sqrt{abc.b}+2c^2\sqrt{abc.c}\)

\(=2a^2\sqrt{a}+2b^2\sqrt{b}+2b^2\sqrt{c}\) (***)

Đặt \(\sqrt{a}=t;\sqrt{b}=u;\sqrt{c}=v\).và \(t.u.v=1\)

(***) trở thành: \(2t^5+2u^5+2v^5=2\left(t^5+u^5+v^5\right)\)

Ta có: \(t^5+u^5+v^5+1+1\ge5\sqrt[5]{t^5u^5v^5.1.1}=5\)

Suy ra \(t^5+u^5+v^5\ge5-2=3\)

Suy ra \(2\left(t^5+u^5+v^5\right)\ge2.3=6\) (****)

Kết hợp (**) ; (***) và (****) suy ra \(a^3\left(b+c\right)+b^3\left(a+c\right)+c^3\left(a+b\right)\ge6\)

Thay vào (1) suy ra \(VT+\frac{\left[a^3\left(b+c\right)+b^3\left(a+c\right)+c^3\left(a+b\right)\right]}{4}\ge VT+\frac{6}{4}\ge3\)

Suy ra \(VT\ge\frac{3}{2}^{\left(đpcm\right)}\)

Dấu "=" xảy ra khi a = b = c = 1

Bài dài quá,có gì sai sót mong bạn thông cảm.Vì khi bài dài,mình làm có thể sẽ bị ngược dấu. :v

26 tháng 5 2019

Chết mọe,hình như em làm sai rồi thì phải :(,Sr ạ!

AH
Akai Haruma
Giáo viên
9 tháng 12 2017

Lời giải:

Đặt biểu thức vế trái là A

Có \(a+\frac{1}{a+1}=\frac{a^2+a+1}{a+1}=\frac{a^2}{a+1}+1=\frac{a^2}{a+1}+\frac{1}{2}+\frac{1}{2}\)

Áp dụng BĐT Cauchy-Schwarz:
\(a+\frac{1}{a+1}\geq \frac{(a+1+1)^2}{a+1+2+2}=\frac{(a+2)^2}{a+5}\)

Thực hiện tương tự với các phân thức còn lại và nhân theo vế:

\(\Rightarrow A\geq \frac{(a+2)^2(b+2)^2(c+2)^2}{(a+5)(b+5)(c+5)}\)

Áp dụng BĐT AM-GM:

\((a+2)(b+2)(c+2)\geq 3\sqrt[3]{a}.3\sqrt[3]{b}.3\sqrt[3]{c}=27\sqrt[3]{abc}\geq 27\)

\(\Rightarrow A\geq \frac{27(a+2)(b+2)(c+2)}{(a+5)(b+5)(c+5)}\) (1)

Ta sẽ cm

\(\frac{27(a+2)(b+2)(c+2)}{(a+5)(b+5)(c+5)}\geq \frac{27}{8}(*)\Leftrightarrow 8(a+2)(b+2)(c+2)\geq (a+5)(b+5)(c+5)\)

\(\Leftrightarrow 8[abc+8+2(ab+bc+ac)+4(a+b+c)]\geq abc+125+5(ab+bc+ac)+25(a+b+c)\)

\(\Leftrightarrow 7abc+11(ab+bc+ac)+7(a+b+c)\geq 61\)

BĐT trên luôn đúng theo AM_GM:

\(7abc+11(ab+bc+ac)+7(a+b+c)\geq 7abc+33\sqrt[3]{a^2b^2c^2}+21\sqrt[3]{abc}\geq 7+33+21=61\)

Do đó (*) đúng.

Từ \((1);(2)\Rightarrow A\geq \frac{27}{8}\) (đpcm)

Dấu bằng xảy ra khi \(a=b=c=1\)