Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
điện thoại cùi nên chụp hơi mờ, đề này còn thiếu a,,bc>0
b)Ta có: \(\dfrac{a^3}{bc}+\dfrac{b^3}{ac}+\dfrac{c^3}{ab}\ge a+b+c\left(1\right)\)
\(\Leftrightarrow\dfrac{a^4}{abc}+\dfrac{b^4}{abc}+\dfrac{c^4}{abc}\ge a+b+c\)
\(\Leftrightarrow\dfrac{a^4+b^4+c^4}{abc}\ge a+b+c\)
\(\Leftrightarrow a^4+b^4+c^4\ge abc\left(a+b+c\right)\)
Ta xét BĐT phụ: \(x^2+y^2\ge2xy\)
\(y^2+z^2\ge2yz\)
\(x^2+z^2\ge2xz\)
Cộng các BĐT phụ vừa chứng minh:
\(2\left(x^2+y^2+z^2\right)\ge2\left(xy+yz+xz\right)\)
\(\Leftrightarrow x^2+y^2+z^2\ge xy+yz+xz\)
Áp dụng vào bài, ta có:
\(a^4+b^4+c^4\ge a^2b^2+b^2c^2+c^2a^2\)
Áp dụng lần nữa:
\(a^2b^2+b^2c^2+c^2a^2\ge ab^2c+bc^2a+a^2bc=abc\left(a+b+c\right)\)
Vậy ta suy ra được điều phải chứng minh
a) Đặt vế trái BĐT là P
\(\dfrac{a^3}{\left(1+b\right)\left(1+c\right)}+\dfrac{1+b}{8}+\dfrac{1+c}{8}\ge3\sqrt[3]{\dfrac{a^3\left(1+b\right)\left(1+c\right)}{\left(1+b\right)\left(1+c\right)8.8}}=\dfrac{3a}{4}\)
Tương tự: \(\dfrac{b^3}{\left(1+a\right)\left(1+c\right)}+\dfrac{1+a}{8}+\dfrac{1+c}{8}\ge\dfrac{3b}{4}\)
\(\dfrac{c^3}{\left(1+a\right)\left(1+b\right)}+\dfrac{1+a}{8}+\dfrac{1+b}{8}\ge\dfrac{3c}{4}\)
Cộng vế theo vế các BĐT vừa chứng minh
\(P+\dfrac{6+2a+2b+2c}{8}\ge\dfrac{3a+3b+3c}{4}\)
\(P\ge\dfrac{3a+3b+3c}{4}-\dfrac{2\left(3+a+b+c\right)}{8}=\dfrac{3a+3b+3c-a-b-c-3}{4}=\dfrac{2\left(a+b+c\right)-3}{4}\)
\(a+b+c\ge3\sqrt[3]{abc}=3\)
\(\Rightarrow P\ge\dfrac{2.3-3}{4}=\dfrac{3}{4}\)
đặt ab=x, bc=y, ac=z
suy ra \(x^3+y^3+z^3=3xyz\)
pt thanh nhân tử \(\left(x+y+z\right)\left(x^2+y^2+z^2-xz-xy-yz\right)=0\)
do x,y,z>0suy ra x+y+z>0
nên suy ra \(x^2+y^2+z^2-xz-yz-xy=0\)
\(\Leftrightarrow2x^2+2y^2+2z^2-2xz-2xy-2yz=0\Leftrightarrow\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2=0\)
suy ra x=y=z
thế vào pt ta có dpcm
bai nay t lam roi vao trang chu cua nick thangbnsh cua t keo xuong tim la thay
Câu hỏi của Tuyển Trần Thị - Toán lớp 9 | Học trực tuyến
+ \(2a+b+c=\left(a+b\right)+\left(a+c\right)\)
\(\ge2\sqrt{\left(a+b\right)\left(a+c\right)}\) ( theo AM-GM )
\(\Rightarrow\left(2a+b+c\right)^2\ge4\left(a+b\right)\left(a+c\right)\)
\(\Rightarrow\frac{1}{\left(2a+b+c\right)^2}\le\frac{1}{4\left(a+b\right)\left(a+c\right)}\)
Dấu "=" xảy ra \(\Leftrightarrow b=c\)
+ Tương tự : \(\frac{1}{\left(2b+c+a\right)^2}\le\frac{1}{4\left(a+b\right)\left(b+c\right)}\). Dấu "=" xảy ra <=> a = c
\(\frac{1}{\left(2c+a+b\right)^2}\le\frac{1}{4\left(a+c\right)\left(b+c\right)}\). Dấu "=" xảy ra \(\Leftrightarrow a=b\)
Do đó : \(P\le\frac{1}{4}\left(\frac{1}{\left(a+b\right)\left(a+c\right)}+\frac{1}{\left(a+b\right)\left(b+c\right)}+\frac{1}{\left(a+c\right)\left(b+c\right)}\right)\)
\(\Rightarrow P\le\frac{1}{2}\cdot\frac{a+b+c}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}\)
\(\left(a+b\right)\left(b+c\right)\left(c+a\right)\ge2\sqrt{ab}\cdot2\sqrt{bc}\cdot2\sqrt{ca}\)\(=8abc\)
\(\Rightarrow P\le\frac{a+b+c}{16abc}\)
+ \(\frac{1}{a^2}+\frac{1}{b^2}\ge\frac{2}{ab}\). Dấu :=" xảy ra \(\Leftrightarrow a=b\)
\(\frac{1}{b^2}+\frac{1}{c^2}\ge\frac{2}{bc}\). Dấu "=" xảy ra <=> b = c
\(\frac{1}{c^2}+\frac{1}{a^2}\ge\frac{2}{ca}\). Dấu "=" xảy ra <=> c = a
\(\Rightarrow2\left(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\right)\ge2\left(\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}\right)\)
\(\Rightarrow3\ge\frac{a+b+c}{abc}\) \(\Rightarrow a+b+c\le3abc\)
\(\Rightarrow P\le\frac{3abc}{16abc}=\frac{3}{16}\)
Dấu "=" xảy ra \(\Leftrightarrow a=b=c=1\)
BĐT cơ bản
\(\dfrac{1}{x}+\dfrac{1}{y}\ge\dfrac{4}{x+y}\)
\(\dfrac{ab}{c+1}=ab\dfrac{1}{c+a+b+c}=ab\dfrac{1}{\left(c+a\right)+\left(b+c\right)}\le\dfrac{ab}{4}\left[\dfrac{1}{c+a}+\dfrac{1}{b+c}\right]\)
\(\dfrac{bc}{a+1}=bc\dfrac{1}{a+a+b+c}=bc\dfrac{1}{\left(a+b\right)+\left(a+c\right)}\le\dfrac{bc}{4}\left[\dfrac{1}{a+b}+\dfrac{1}{a+c}\right]\)
\(\dfrac{ac}{b+1}=ac\dfrac{1}{b+a+b+c}=ac\dfrac{1}{\left(b+a\right)+\left(b+c\right)}\le\dfrac{ac}{4}\left[\dfrac{1}{b+a}+\dfrac{1}{b+c}\right]\)
Công lại:
\(A\le\left[\dfrac{ab+bc}{4\left(c+a\right)}+\dfrac{ab+ac}{4\left(b+c\right)}+\dfrac{bc+ac}{4\left(b+a\right)}\right]\)
\(A\le\left[\dfrac{b\left(a+c\right)}{4\left(c+a\right)}+\dfrac{a\left(b+c\right)}{4\left(b+c\right)}+\dfrac{c\left(b+a\right)}{4\left(b+a\right)}\right]\)
\(A\le\left[\dfrac{b}{4}+\dfrac{a}{4}+\dfrac{c}{4}\right]\)
\(A\le\dfrac{b+a+c}{4}=\dfrac{1}{4}\)
Đẳng thức khi \(a=b=c=\dfrac{1}{3}\)
Xong rồi đó mỏi cái lưng
Áp dụng BĐT Cauchy cho từng cặp số:
\(\dfrac{ab}{c+1}=\dfrac{bc}{a+1}\); \(\dfrac{bc}{a+1}=\dfrac{ca}{b+1}\) ; \(\dfrac{ac}{b+1}=\dfrac{ab}{c+1}\)
Kết quả cuối cùng là \(VT\ge a+b+c=1\)
Dấu " = " xảy ra khi và chỉ khi \(a=b=c=\dfrac{1}{3}\)
Không chắc :v