Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
nhận được thông báo thì kéo chuột xuống xem bài giải của t ở phần duyệt bài nhé
3.
\(5a^2+2ab+2b^2=\left(a^2-2ab+b^2\right)+\left(4a^2+4ab+b^2\right)\)
\(=\left(a-b\right)^2+\left(2a+b\right)^2\ge\left(2a+b\right)^2\)
\(\Rightarrow\sqrt{5a^2+2ab+2b^2}\ge2a+b\)
\(\Rightarrow\frac{1}{\sqrt{5a^2+2ab+2b^2}}\le\frac{1}{2a+b}\)
Tương tự \(\frac{1}{\sqrt{5b^2+2bc+2c^2}}\le\frac{1}{2b+c};\frac{1}{\sqrt{5c^2+2ca+2a^2}}\le\frac{1}{2c+a}\)
\(\Rightarrow P\le\frac{1}{2a+b}+\frac{1}{2b+c}+\frac{1}{2c+a}\)
\(\le\frac{1}{9}\left(\frac{1}{a}+\frac{1}{a}+\frac{1}{b}+\frac{1}{b}+\frac{1}{b}+\frac{1}{c}+\frac{1}{c}+\frac{1}{c}+\frac{1}{a}\right)\)
\(=\frac{1}{3}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\le\frac{1}{3}.\sqrt{3\left(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\right)}=\frac{\sqrt{3}}{3}\)
\(\Rightarrow MaxP=\frac{\sqrt{3}}{3}\Leftrightarrow a=b=c=\sqrt{3}\)
Ta có: Theo bất đẳng thức cauchy schwarz và bất đẳng thức cauchy với a;b;c>0 ta có:
\(\dfrac{1}{a^2}+\dfrac{1}{a^2}=\dfrac{\left(\sqrt{a}\right)^2}{a^3}+\dfrac{1}{a^2}\ge\dfrac{\left(\sqrt{a}+1\right)^2}{a^3+a^2}\ge\dfrac{4\sqrt{a}}{a^3+a^2}\)(1)
Tương tự \(\dfrac{1}{b^2}+\dfrac{1}{b^2}\ge\dfrac{4\sqrt{b}}{b^3+b^2}\left(2\right);\dfrac{1}{c^2}+\dfrac{1}{c^2}\ge\dfrac{4\sqrt{c}}{c^3+c^2}\left(3\right)\)
Cộng từng vế (1) ;(2);(3) vế theo vế rồi chia hai vế cho 2 ta có đpcm
ta có : \(\dfrac{1}{a^2}+\dfrac{1}{b^2}=\dfrac{a}{a^3}+\dfrac{1}{b^2}\ge\dfrac{\left(\sqrt{a}+1\right)^2}{a^3+b^2}=\dfrac{a^2+2\sqrt{a}+1}{a^3+b^2}\ge\dfrac{4\sqrt{a}}{a^3+b^2}\)
làm tương tự ta có : \(\dfrac{1}{b^2}+\dfrac{1}{c^2}\ge\dfrac{4\sqrt{b}}{b^3+c^2}\) và \(\dfrac{1}{c^2}+\dfrac{1}{a^2}\ge\dfrac{4\sqrt{c}}{c^3+a^2}\)
cộng quế theo quế \(\Rightarrow\) (đpcm)
bạn làm sai rồi
cái dòng đầu tiên í
\(\dfrac{\left(\sqrt{a}+1\right)^2}{a^3+b^2}\ne\dfrac{a^2+2\sqrt{a}+1}{a^3+b^2}\)