Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Giả sử \(\left\{{}\begin{matrix}\left(a+b+c\right)^2\le9ab\\\left(a+b+c\right)^2\le9bc\\\left(a+b+c\right)^2\le9ca\end{matrix}\right.\)
Cộng vế với vế
\(\Rightarrow\left(a+b+c\right)^2\le3ab+3bc+3ca\)
\(\Leftrightarrow a^2+b^2+c^2-ab-ac-bc\le0\)
\(\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\le0\)
\(\Leftrightarrow a=b=c\) trái với giả thiết a;b;c đôi một khác nhau
Vậy điều giả sử là sai hay tồn tại một trong 3 số nhỏ hơn \(\left(a+b+c\right)^2\)
Bài 5:
Giả sử tồn tại 7 số không thỏa mãn điều kiện đề bài. Không mất tính quát, ta coi rằng \(x_1< x_2< ...< x_7\)
Do 7 số đã cho là các số nguyên dương nên :
\(x_2\ge x_1+1\)
\(x_3+x_1\ge4x_2\ge4\left(x_1+1\right)\Rightarrow x_3\ge3x_1+4\)
\(x_4+x_1\ge4x_3\ge4\left(3x_1+4\right)\Rightarrow x_4\ge11x_1+16\)
\(x_5+x_1\ge4x_4\ge4\left(11x_1+16\right)\Rightarrow x_5\ge43x_1+64\)
\(x_6+x_1\ge4x_5\ge4\left(43x_1+64\right)\Rightarrow x_6\ge171x_1+256\)
\(x_7+x_1\ge4x_6\ge4\left(171x_1+256\right)\Rightarrow x_7\ge683x_1+1024\)
Do x1 là số nguyên dương nên \(x_1\ge1\Rightarrow x_7\ge683+1024=1707>1706\) (Vô lý)
Vậy nên phải tồn tại bộ ba số thỏa mãn yêu cầu của đề bài.
a) Từ giả thiết : \(\dfrac{1}{a}+\dfrac{1}{b}\text{=}\dfrac{1}{c}\)
\(\Rightarrow2ab\text{=}2bc+2ca\)
\(\Rightarrow2ab-2bc-2ca\text{=}0\)
Ta xét : \(\left(a+b-c\right)^2\text{=}a^2+b^2+c^2+2ab-2bc-2ca\)
\(\text{=}a^2+b^2+c^2\)
Do đó : \(A\text{=}\sqrt{a^2+b^2+c^2}\text{=}\sqrt{\left(a+b-c\right)^2}\)
\(\Rightarrow A\text{=}a+b-c\)
Vì a;b;c là các số hữu tỉ suy ra : đpcm
b) Đặt : \(a\text{=}\dfrac{1}{x-y};b\text{=}\dfrac{1}{y-x};c\text{=}\dfrac{1}{z-x}\)
Do đó : \(\dfrac{1}{a}+\dfrac{1}{b}\text{=}\dfrac{1}{c}\)
Ta có : \(B\text{=}\sqrt{\dfrac{1}{a^2}+\dfrac{1}{b^2}+\dfrac{1}{c^2}}\)
Từ đây ta thấy giống phần a nên :
\(B\text{=}a+b-c\)
\(B\text{=}\dfrac{1}{x-y}+\dfrac{1}{y-z}-\dfrac{1}{z-x}\)
Suy ra : đpcm.
Mình bổ sung đề phần b cần phải có điều kiện của x;y;z nha bạn.
\(A=\dfrac{a^2}{a\sqrt{a^2+9bc}}+\dfrac{b^2}{b\sqrt{b^2+9ca}}+\dfrac{c^2}{c\sqrt{c^2+9ab}}\)
\(A\ge\dfrac{\left(a+b+c\right)^2}{a\sqrt{a^2+9bc}+b\sqrt{b^2+9ca}+c\sqrt{c^2+9ab}}\)
Áp dụng Bunhiacopxki:
\(\sqrt{a}.\sqrt{a^3+9abc}+\sqrt{b}.\sqrt{b^3+9abc}+\sqrt{c}.\sqrt{c^3+9abc}\le\sqrt{\left(a+b+c\right)\left(a^3+b^3+c^3+27abc\right)}\)
\(\Rightarrow A\ge\dfrac{\left(a+b+c\right)^2}{\sqrt{\left(a+b+c\right)\left(a^3+b^3+c^3+27abc\right)}}=\sqrt{\dfrac{\left(a+b+c\right)^3}{a^3+b^3+c^3+27abc}}\) (1)
Ta có:
\(\left(a+b+c\right)^3=a^3+b^3+c^3+3\left(a^2b+b^2c+c^2a+ab^2+bc^2+ca^2\right)+6abc\)
\(\dfrac{1}{10}\left(a^3+b^3+c^3\right)\ge\dfrac{3}{10}abc\)
\(a^2b+b^2c+c^2a+ab^2+bc^2+ca^2\ge6\sqrt[6]{a^6b^6c^6}=6abc\)
\(\Rightarrow\left(a+b+c\right)^3\ge\dfrac{9}{10}\left(a^3+b^3+c^3\right)+\dfrac{3}{10}abc+18abc+6abc\)
\(\Rightarrow\left(a+b+c\right)^3\ge\dfrac{9}{10}\left(a^3+b^3+c^3+27abc\right)\) (2)
(1);(2) \(\Rightarrow A\ge\sqrt{\dfrac{\dfrac{9}{10}\left(a^3+b^3+c^3+27abc\right)}{a^3+b^3+c^3+27abc}}=\dfrac{3\sqrt{10}}{10}\)
Dấu "=" xảy ra khi \(a=b=c\)
Đặt \(\left\{{}\begin{matrix}a-b=x\\b-c=y\\c-a=z\end{matrix}\right.\Leftrightarrow x+y+z=0\)
\(\Leftrightarrow A=\sqrt{\dfrac{1}{x^2}+\dfrac{1}{y^2}+\dfrac{1}{z^2}}\\ \Leftrightarrow A=\sqrt{\left(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\right)^2-2\left(\dfrac{1}{xy}+\dfrac{1}{yz}+\dfrac{1}{xz}\right)}\\ \Leftrightarrow A=\sqrt{\left(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\right)^2-\dfrac{2\left(x+y+z\right)}{xyz}}\\ \Leftrightarrow A=\sqrt{\left(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\right)^2-\dfrac{2\cdot0}{xyz}}\\ \Leftrightarrow A=\sqrt{\left(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\right)^2}=\left|\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\right|\left(đpcm\right)\)