Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a b o e f n m h q
A, DỄ DÀNG NHẬN THẤY AF VÀ BE LÀ CÁC TIA PHÂN GIÁC ( DO TAM GIÁC ABC ĐỀU)
=> CO LÀ TIA PHÂN GIÁC CỦA GÓC ACB
=> ACO = 30
DỄ DÀNG TÍNH ĐƯỢC OBC = 30
=> OBC = ACO
DO TAM GIÁC ABC ĐỀU => O LÀ GIAO ĐIỂM CỦA 3 ĐƯỜNG TRUNG TRỰC
=> OB = OC
TỪ ĐÓ DỄ DÀNG CHỨNG MINH ĐƯỢC TAM GIÁC OBM = TAM GIÁC OCN ( C.G.C)
=> OM = ON
B, KẺ FH VUÔNG GÓC VỚI EF, NQ VUÔNG GÓC VỚI EF
DO CF = AE , CN = BM
=> MF = NE
LẠI CÓ GÓC NEQ = CEF = CFE = 60
=> NEQ = CFE
TỪ ĐÓ DỄ DÀNG CHỨNG MINH ĐƯỢC TAM GIÁC NQE = TAM GIÁC MHF ( G.C.G)
=> NQ = MH
TA CÓ NE SONG SONG VỚI MH , NQ = MH
=> MQNH LÀ HÌNH BÌNH HÀNH
=> QH CẮT MN TẠI TRUNG ĐIỂM CỦA MN
MÀ I LÀ TRUNG ĐIỂM CỦA MN
=> I THUỘC HQ
=> I THUỘC EF
=> ĐPCM
C, BÀI NÀY TỰ VẼ HÌNH NHÉ
TỪ M,N KỂ ĐƯỜNG VUÔNG GÓC VỚI AB CẮT AB TẠI H VÀ K. TỪ M KỂ ĐƯỜNG VUÔNG GÓC VỚI NK CẮT NK TẠI Q
=> MN LỚN HƠN HOẶC BẰNG MQ
MÀ MQ =HK
=> MN LỚN HƠN HOẶC BẰNG HK
MẶT KHÁC KA + HB = 1/2 AN + 1/2 BM = 1/2 AB = 1/2 BC = 1/2 AC
=> HK = 1/2 AB
=> MN LỚN HƠN HOẶC BẰNG 1/2AB
DẤU BẰNG XẢY RA KHI VÀ CHỈ KHI M VÀ N LÀ TRUNG ĐIỂM CỦA AC VÀ BC
( MÌNH MỚI HỌC LỚP 7)
Nhac cau 3
Tu M,N ke duong vuong goc voi AB cat AB tai H va K.Tu M ke duong vuong goc voi NK cat NK tai Q
=>MN\(_{\ge}\)MQ. Ma MQ=HK
=>MN\(\ge\)HK
Mat \(\ne\)KA+HB=1/2AN+1/2BM=1/2AB=1/2BC=1/2CA
=>HK=1/2AB
=>MN\(\ge\)1/2AB.dau bang xay ra khi M,N la trung diem cua cac canh
A B C M N D K E O
a) Ta thấy: Tứ giác AMDN nội tiếp đường tròn: ^AND + ^AMD = 1800
Mà ^AMD + ^BMD = 1800 nên ^AND=^BMD hay ^CND=^BMD
Tứ giác ABDC nội tiếp đường tròn (O) => ^ABD + ^ACD = 1800. Mà ^ACD+^NCD=1800
Nên ^ABD=^NCD hay ^MBD=^NCD
Xét \(\Delta\)MBD và \(\Delta\)NCD: ^BMD=^CND; BM=CN; ^MBD=^NCD => \(\Delta\)MBD=\(\Delta\)NCD (g.c.g)
=> BD=CD (2 cạnh tương ứng) => D là điểm chính giữa của cung BC
Mà cung BC cố định => D là 1 điểm cố định (đpcm).
b) Xét đường tròn (O) có dây cung BC ; \(\Delta\)ABC đều nội tiếp (O); D là điểm chính giữa cung BC
=> 3 điểm A;O;D thẳng hàng => ^ABD=^ACD=900 hay ^MBD=900
Do \(\Delta\)BDC cân đỉnh D => ^DBC= (1800 - ^CBD)/2 (1)
\(\Delta\)MBD=\(\Delta\)NCD (cmt) => ^BDM=^CDN => ^BDM+^MDC=^CDN+^MDC => ^BDC=^MDN (2)
Ta cũng có: MD=ND => \(\Delta\)MDN cân tại D => ^DMN= (1800 - ^MDN)/2 (3)
Từ (1);(2) và (3) => ^DBC=^DMN hay ^DBK=^DMK => Tứ giác BMKD nội tiếp đường tròn.
=> ^MBD+^MKD=1800. Mà ^MBD=900 => ^MKD=900 => DK vuông góc MN (đpcm).
c) Xét TH điểm M trùng với điểm B. Khi đó điểm N sẽ trùng với điểm C (Do BM=CN)
=> SAMN = SABC (*)
Xét TH điểm M khoog trùng điểm B
Qua điểm M kẻ 1 đường thẳng song song với AC cắt BC tại E.
Vì \(\Delta\)ABC đều => \(\Delta\)MBE là tam giác đều => BM=EM.
Lại có: BM=CN => EM=CN
Xét \(\Delta\)MEK và \(\Delta\)NCK: ^EMK=^CNK; ^MEK=^NCK (So le trong); EM=CN
=> \(\Delta\)MEK=\(\Delta\)NCK (g.c.g) => SMEK = SNCK
=> SAMN = SAMKC + SNCK = SAMKC + SMEK = SAMEC.
Mà SAMEC < SABC => SAMN < SABC (**)
Từ (*) và (**) => SAMN \(\le\)SABC => Max SAMN = SABC
Dấu "=" xảy ra khi điểm M trùng với điểm B.
a) góc BMN = góc ACN => đpcm
b) góc MKC = sđ BN + sđ MC = sđ AN+ sđ AM = góc NCM => đpcm
c) góc ABK= góc CBK => BK là đg p.g
tg tự CK là đg p.g
=>đpcm
a) xét tam giác BOM và tam giác CON ta có
BM=CN (gt)
OB=OC=R
\(\widehat{OBM}=\widehat{OCN}=30^0\)(do tam giác ABC đều )
=> tam giác BOM = tam giác CON(c.g.c)
suy ra OM=ON hay tam giác OMN cân tại O , do I là trung điểm của MN
suy ra \(OI\perp MN\Rightarrow\widehat{OIM}=\widehat{OHM}=90^0\)nên tứ giác OMHI nội tiếp (có 2 đỉnh liên tiếp I,H cùng nhìn OM góc =90 độ )
b) Do điểm P nằm trên trung trực cạnh MN nên
PM=PN (1)
ta có \(180^0=\widehat{OMB}+\widehat{OMC}=\widehat{OMB}+\widehat{ONC}\)
=> tứ giác OMNC nội tiếp ( tổng 2 góc đối = 180 độ )
nên \(\hept{\begin{cases}\widehat{MON}=180^0-\widehat{NCM}=120^0\\\widehat{POM}=\widehat{PON}=120^0\end{cases}}\)
suy ra \(\widehat{POM}+\widehat{PBM}=180^0=>\)tứ giác PBMO nội tiếp nên \(\widehat{OPM}=\widehat{OBM}=30^0\)
CM tương tự ta cx có \(\widehat{OPN}=\widehat{OAN}=30^0=>\widehat{MPN}=60^0\)(2)
=> từ (1) zà (2) ,tam giác PMN đều
c) Từ CM ở câu a ,b
=>\(\widehat{OMN}=\widehat{OHI}=\widehat{OCN}=30^0\Rightarrow HI//AB\)
gọi K là trung điểm của AC thì H,I ,K thẳng hàng
tam giác IAB có AB ko đổi nên chi vi tam giác nhỏ nhất khi IA+IB nhỏ nhất . ĐƯờng thẳng HI cố định . Gọi D là điểm đối xứng B qua HI thì điểm D có định , suy ra độ dài AD ko đổi
ta có \(IB=ID\Rightarrow IA+IB=IA+ID\ge AD\)
dấu = xảy ra khi zà chỉ khi A,D ,I thẳng hàng.
Tức đểm I chính là giao điểm của AD và HK
Mặt khác ta dễ CM đc AHKD là hình bình hành
Nên dấu "=" xảy ra khi I là trung điểm của HK , khi đó \(M\equiv H\)
zậy ...