Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Tự vẽ hình nha !
Xét tam giác đều ABC có :
\(\widehat{A}=\widehat{B}=\widehat{C}=60^0\)
Xét tam giác đều MDC có :
\(\widehat{DMC}=\widehat{MCD}=\widehat{CDM}=60^0\)
Ta có :
Góc ACB = ACM + MCB = 600
Góc MCD = MCB + BCD = 600
=> Góc ACM = Góc BCD
Xét tam giác ACM và tam giác BCD có :
AC = BC
CD = CM => tam giác ACM = tam giác BCD
Góc ACM = Góc BCD
a)
– Xét ΔCAM và ΔCBD ta có:
+) AC = BC (ΔABC đều)
+) ∠ACM + ∠MCB = 60º, ∠BCD + ∠MCB = 60º nên suy ra ∠ACM = ∠BCD
+) MC = DC (ΔMCD đều)
=> ΔCAM = ΔCBD (c.g.c) (đpcm)
b) – Theo câu a, ΔCAM = ΔCBD (c.g.c)
=> BD = AM = 1 (cm) (Hai cạnh tương ứng)
=> ∠AMC = ∠BDC (Hai góc tương ứng) (1)
– Xét ΔBDM ta có:
AM = 1 cm,
BM là cạnh của hình vuông có diện tích bằng 3 cm². Nên suy ra: BM = √3 (cm).
MD = MC = 2 cm (ΔMCD đều).
Ta có: BM² + BD² = 1 + (√3)² = MD²
– Theo định lý Pi-ta-go đảo, suy ra: ΔBDM là tam giác vuông tại B (đpcm).
c) – Theo câu b ta có: ΔBDM là tam giác vuông tại B, mà BD = 1 cm, DM = 2 cm,
=> DM = 2BD nên suy ra: ∠BMD = 30º, mà ΔMCD là tam giác đều nên ∠CMD = 60º,
=> ∠BMC = 30º + 60º = 90º.
– Ta có: ∠BMD + ∠BDM = 90º
=> ∠BDM = 90º – 30º = 60º, mà ΔMCD là tam giác đều nên ∠MDC = 60º,
=> ∠BDC = ∠BDM + ∠MDC = 60º + 60º = 120º.
Từ (1) suy ra: ∠AMC = ∠BDC = 120º.
=> ∠AMB = 360º – (∠AMC + ∠BMC) = 360º – (120º + 90º) = 150º.
– Ta có: ∠AMD = ∠AMC + ∠DMC = 120º + 60º = 180º
=> Hai tia MA và MD là hai tia đối nhau
=> 3 điểm A, M, D thẳng hàng.
d) Theo câu c, ta có: ∠BMC = 90º nên suy ra: ΔBMC là tam giác vuông tại B.
=> BC² = BM² + MC² = 3 + 4 = 7.
=>Diện tích hình vuông có cạnh BC là S = BC² = 7 (cm²).
Hình tự vẽ!
a: Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:
\(BC^2=AB^2+AC^2\)
\(\Leftrightarrow AC^2=10^2-6^2=64\)
hay AC=8cm
mà AD=AC
nên AD=8cm
b: Xét ΔBCD có
BA là đường trung tuyến ứng với cạnh CD
\(BM=\dfrac{2}{3}BA\)
Do đó: M là trọng tâm của ΔBCD
Suy ra: DM là đường trung tuyến ứng với cạnh BC
mà DE là đường trung tuyến ứng với cạnh BC
và DM,DE có điểm chung là D
nên D,M,E thẳng hàng
a, Xét \(\Delta ACM\)và \(\Delta BCD\)có :
MC = DC ( gt )
\(\widehat{ACM}\)= \(\widehat{DCB}\)( cx cộng vs \(\widehat{MCB}\)
BC=Ac ( gt )
=> \(\Delta ACM=\Delta BCD\left(c-g-c\right)\)
b, \(BM.BM=3cm^2\)
\(\Rightarrow BM=\sqrt{3}\)
AD t/c Pi ta- go đảo, ta có :
\(MD^2=BM^2+BD^2\)
22 = \(\left(\sqrt{3}\right)^2+1^2\)
4 = 3 + 1 \(\Rightarrow\Delta MBD\)vuông
c, Xét \(\Delta BMD\)vuông tại B, ta có :
BD = \(\frac{1}{2}MD\)
\(\Rightarrow\widehat{BMD}\)= 30o , \(\widehat{CMD}\)= 60o ( vì \(\Delta CMD\)đều )
Ta có : \(\widehat{BMD}\)+ \(\widehat{CMD}\) = \(\widehat{BMC}\)
30o + 60o = 90o
Vì \(\Delta MDC\)đều \(\Rightarrow\widehat{MDC}\)= 60o
Ta có : \(\widehat{MBD}\)+ \(\widehat{BDM}\)+ \(\widehat{DMB}\)= 180o ( tổng 3 góc trong 1 \(\Delta\))
90o + \(\widehat{BDM}\)+ 30o = 180o
\(\widehat{BDM}\)= 60o
Mà \(\widehat{MDC}\)+ \(\widehat{BDM}\)= 60o + 60o = 120o
lại có : \(\Delta CAM=\Delta CBD\)(câu a ) => \(\widehat{AMC}\)= 120o
Ta có : \(\widehat{AMB}\)+ \(\widehat{BMC}\)+ \(\widehat{AMC}\)= 360o
\(\widehat{AMB}\)+ 90o + 120o = 360o
\(\widehat{AMB}\)= 1500
Mà \(\widehat{AMB}\)+ \(\widehat{BMD}=150^o+30^o=180^o\)
\(\Rightarrow\widehat{AMD}\)là góc bẹt
=> A, M,D thẳng hàng
d, Xét \(\Delta BMC\)vuông
BC2 = BM2 + MC2
= \(\left(\sqrt{3}\right)^2+4\)
= 7
=> \(BC=\sqrt{7}\)
Shv có cạnh BC là \(\sqrt{7}.\sqrt{7}=7\)