Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, Xét 2 tam giác vuông ABD và HBD có:
BD cạnh chung
HB=AB(gt)
=> t.giác ABD=t.giác HBD(cạnh góc vuông-cạnh huyền)
=> \(\widehat{ABD}\)=\(\widehat{HBD}\)(2 góc tương ứng)
=> BD là tia phân giác của góc ABC
b, xét t.giác ABC có: \(\widehat{BAC}\)+\(\widehat{ABC}\)+\(\widehat{ACB}\)=180 độ
=> 90 độ+60 độ+ \(\widehat{ACB}\)=180 độ
=> \(\widehat{ACB}\)=30 độ(1) mà BD là tia p/g của \(\widehat{ABC}\)=> DBC=30 độ(2)
từ (1) và (2) suy ra tam giác BDC cân tại D
A B C H D
a/ kéo dài đoạn thẳng BG cắt AC tại D.Vì 3 đường trung tuyến cùng đi qua 1 điểm nên BD là đường trung truyến của góc B.
- Xét tam giác ABC có góc A=90 độ, BI=CI nên AI=1/2 bc=4 cm
- Áp dụng định lý Py-ta-go cho tam giác ABC ta có: AB^2+AC^2=BC^2 suy ra AC= căn 39 nên AD=căn 39/2
- Áp dụng định lý Py-ta- go cho tam giác ABD có góc A= 90 độ suy ra AB^2+AD^2=BD^2 nên BD=139/2 suy ra BG=2/3BD suy ra BG=139/6
b/ Vì tam giác ABc vuông tại A nên góc C là góc nhọn suy ra góc BCN là góc tù suy ra góc CNB là góc nhọn suy ra BN> CN
vậy BA<CN<BN
BẠN TỰ VẼ HÌNH ĐI NHÉ.... NẾU THẤY ĐÚNG THÌ K CHO MÌNH VỚI
a, T/g AMC= t/g BMD(c-g-c)
b,T/g AMC= t/g BMD(c-g-c) \(\Rightarrow\widehat{DBM}=\widehat{ACM}\) mà chúng ở vị trí so le trong \(\Rightarrow BD\)song song AC
c, Diện tích tam giác ABC là : (3.4):2=6(cm) (1) hay (BC.AM):2(2) ;Áp dụng đlí Py-ta-go vào tam giác ABC ta được BC=5cm (3)
Từ (1);(2);(3) \(\Rightarrow\)5.AM=12 \(\Rightarrow AM=\frac{12}{5}=2,4cm\)
d, Khoảng cách từ đỉnh A đến trong tâm G là \(\frac{2}{3}\)
Hok tốt (Hình dễ tự vẽ nha)
A B C M D
a. Xét ΔAMC và ΔBMD, ta có:
BM = MC (gt)
∠(AMB) = ∠(BMC) (đối đỉnh)
AM = MD (gt)
Suy ra: ΔAMC = ΔDMB (c.g.c)
⇒ ∠(MAC) = ∠D (2 góc tương ứng)
Suy ra: AC // BD
(vì có 2 góc ở vị trí so le trong bằng nhau)
Mà AB ⊥ AC (gt) nên AB ⊥ BD.
Vậy (ABD) = 90o.
b. Xét ΔABC và ΔBAD ta có:
AB cạnh chung
∠(BAC) = ∠(ABD) = 90o
AC = BD (vì ΔAMC = ΔDMB)
Suy ra: ΔABC = ΔBAD (c.g.c)
c. Ta có: ΔABC = ΔBAD ⇒ BC = AD (2 cạnh tương ứng)
Mặt khác: AM = 1/2 AD
Vậy AM = 1/2 BC.
a, xét tam giác CMA và tam giác BMD có : AM = MD (gt)
BM = CM do AM là trung tuyến (gt)
góc CMA = góc BMD (đối đỉnh)
=> tam giác CMA = tam giác BMD (c - g - c)
=> BD = AC (đn)
Bạn Đồng Hiên ơi bạn ko làm câu b à