Cho ABC có các góc B và C nhọn, BC = a, đườ...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 10 2015

Để cho 3 cái đều có diện tích là \(\frac{1}{3}ABC\) thì :

Trước tiên ta nối AD. Ta được SABC=SADC=1/2 SABC

Để vẽ được BED bằng 1/3 SABC thì ta vẽ SBED\(\frac{1}{3}:\frac{1}{2}\left(S_{ABD}\right)=\frac{2}{3}S_{ABD}\) hay còn nói : BE=2/3 BA

Tương tự với tam giác GDC

Phần còn lại là tứ giác và cũng bằng 2 tam giác kia  

5 tháng 1 2018

b) Giả sử MNPQ là hình chữ nhật 

=> ^QMN=90do HAY QM vuong goc voi MN

Lai co MN//BC

=> BC vuong goc voi QM

    Ma QM //AO

=> AO vuong goc voi BC

=> O thuoc duong cao ke tu A den BC

Goi giao diem cua AO VA BC LA H 

Để SMNPQ=SABC

=> MQ.QP=(BC.AH)/2

Mà QP=BC/2

=> MQ=AH

Ma MQ=AH/2 

=> AH=AO/2

Mà AO hay AH vuong goc voi BC

=> BC la trung truc cua AO .

Vay de tu giac MNPQ vua la HCN vua co dien h =tam giac ABC thi BC phai la trung truc cua AO

5 tháng 1 2018

a,Do tia AO nằm giữa tia AB và tia AC(gt)

Gọi O là điểm nằm giữa đoạn thẳng BC

sao cho BO< OC

M,N,P,Q lần lượt là trung điểm của OB,OC,AC,AB (gt)

=>BM=MO;ON=NC;CP=PA;AQ=QB

Vậy ta có:PQ là đường trung bình của tam giác ABC nên PQ//=1/2 BC (1)

Tương tự:

PN là đường trung bình của tam giác ACO nên PN//=1/2 AO (2)

QM là đường trung bình của tam giác ABO nên QM//=1/2 AO (3)

Từ (2),(3) suy ra:

PN//=QM=1/2 OA ( t/c 2 đường thẳng//) (4)

Do đó PQ//=MN

=> Tứ giác MNPQ là hình bình hành

b,theo cmt : PN//=QM=1/2 OA 

Mặt khác, AO là cạnh đối diện của 2 góc B và góc C

Từ đó=>góc B=góc C

=> tam giác ABC cân tại A

=>O là trung điểm của BC

=>AO _|_BC nên góc AOB=góc AOC=90°

=> 3 điểm B,O,C thẳng hàng (vì BOC=180°=góc AOB+góc AOC)

M,N là trung điểm của OB và OC(gt)

nên B,M,O,N,C thẳng hàng.

=>QM_|_BC và PN_|_BC

Hay góc QMN=góc PNM=1 vuông (5)

Theo (1) PQ//BC

=>PQ_|_QM ; PQ_|_PN

Hay góc MQP=góc NPQ=1 vuông (6)

Từ (5),(6) suy ra:

Tứ giác MNPQ là hình chữ nhật (đpcm)

9 tháng 5 2017

Đoạn thẳng f: Đoạn thẳng [A, B] Đoạn thẳng g: Đoạn thẳng [B, C] Đoạn thẳng h: Đoạn thẳng [A, C] Đoạn thẳng k: Đoạn thẳng [E, M] Đoạn thẳng l: Đoạn thẳng [F, M] A = (-1.14, 6.85) A = (-1.14, 6.85) A = (-1.14, 6.85) B = (-3.22, 3.05) B = (-3.22, 3.05) B = (-3.22, 3.05) C = (4.24, 2.98) C = (4.24, 2.98) C = (4.24, 2.98) Điểm M: Điểm trên g Điểm M: Điểm trên g Điểm M: Điểm trên g Điểm E: Giao điểm của i, f Điểm E: Giao điểm của i, f Điểm E: Giao điểm của i, f Điểm F: Giao điểm của j, h Điểm F: Giao điểm của j, h Điểm F: Giao điểm của j, h

a. Do ME // AC nên \(\frac{ME}{AC}=\frac{BM}{BC}\); MF // AB nên \(\frac{MF}{AB}=\frac{MC}{BC}\)

Từ đó suy ra \(\frac{ME}{AC}+\frac{MF}{AB}=\frac{BM+MC}{BC}=1\) không đổi.

b. Gọi \(\frac{ME}{AC}=t\Rightarrow\frac{MF}{AB}=1-t\Rightarrow S_{ABC}=\frac{a^2}{t^2}=\frac{b^2}{\left(1-t\right)^2}\)

\(\Rightarrow\frac{a}{t}=\frac{b}{1-t}\Rightarrow a\left(1-t\right)=bt\Rightarrow t=\frac{a}{a+b}\Rightarrow t^2=\frac{a^2}{\left(a+b\right)^2}\Rightarrow S_{ABC}=\frac{a^2}{t^2}=\left(a+b\right)^2.\)

c. \(S_{AEMF}=S_{ABC}-S_{BME}-S_{CMF}=\left(a+b\right)^2-a^2-b^2\)

\(=2ab\le a^2+b^2\)

Dấu bằng xảy ra khi a = b, tức là M là trung điểm BC.

Bài 1 : cho \(\Delta ABC\) vuông tại A , đường cao AH (H thuộc BC) . Biết BH =4cm , CH= 9cm . Gọi I,K lần lượt là hình chiếu của H lên AB và AC . Chứng minh rằnga, Tứ giác AIHk là hình chữ nhật  b, \(\Delta AKI\) \(\sim\Delta ABC\)c, Tính diện tích \(\Delta ABC\)Bài 2 : Cho hình thang vuông ABCD ( góc A = góc D =\(90^0\) ) , AB=6cm , CD=12 cm, AD=17 cm . Trên cạch AD , đặt đoạn AE = 8 cma, C/m : \(\Delta ABE\sim\Delta...
Đọc tiếp

Bài 1 : cho \(\Delta ABC\) vuông tại A , đường cao AH (H thuộc BC) . Biết BH =4cm , CH= 9cm . Gọi I,K lần lượt là hình chiếu của H lên AB và AC . Chứng minh rằng

a, Tứ giác AIHk là hình chữ nhật  

b, \(\Delta AKI\) \(\sim\Delta ABC\)

c, Tính diện tích \(\Delta ABC\)

Bài 2 : Cho hình thang vuông ABCD ( góc A = góc D =\(90^0\) ) , AB=6cm , CD=12 cm, AD=17 cm . Trên cạch AD , đặt đoạn AE = 8 cm

a, C/m : \(\Delta ABE\sim\Delta DEC\)

b, tính tỉ số diện tích \(\Delta ABE\) và diện tích \(\Delta DEC\)

c, Tính BC

Bài 3: Cho tam giác ABC vuông tại A , có AB=3cm, AC=5cm , đường phân giác AD . Đường vuông góc với DC cắt AC ở E

a, Chứng minh rằng \(\Delta ABC\sim\Delta DEC\)

b, Tính độ dài các đoạn thẳng BC , BD

c, Tính độ dài AD

d, Tính diện tích \(\Delta ABC\) và diện tích tứ giác ABDE

2
23 tháng 8 2019

Bài 1)

a) Tứ giác AIHK có 3 góc vuông \(\widehat{HKA}=\widehat{HIA}=\widehat{KAI}=90^0\)

Nên suy ra góc còn lại cũng vuông.Tứ giác có 4 góc vuông là hình chữ nhật

b) Câu này không đúng rồi bạn 

Nếu thực sự hai tam giác kia đồng dạng thì đầu bài phải cho ABC vuông cân 

Vì nếu góc AKI = góc ABC = 45 độ ( IK là đường chéo đồng thời là tia phân giác của hình chữ nhật)

c) Ta có : Theo hệ thức lượng trong tam giác ABC vuông

\(AB^2=BC.BH=13.4\)

\(\Rightarrow AB=2\sqrt{13}\)

\(AC=\sqrt{9\cdot13}=3\sqrt{13}\)

Vậy \(S_{ABC}=\frac{AB\cdot AC}{2}=\frac{6\cdot13}{2}=39\left(cm^2\right)\)

23 tháng 8 2019

Bài 2)

a) \(ED=AD-AE=17-8=9\)

Xét tỉ lệ giữa hai cạnh góc vuông trong hai tam giác ABE và DEC ta thấy

\(\frac{AB}{AE}=\frac{ED}{DC}\Leftrightarrow\frac{6}{8}=\frac{9}{12}=\frac{3}{4}\)

Vậy \(\Delta ABE~\Delta DEC\)

b) \(\frac{S_{ABE}}{S_{DEC}}=\frac{AB\cdot AE\cdot\frac{1}{2}}{DE\cdot DC\cdot\frac{1}{2}}=\frac{6\cdot8}{9\cdot12}=\frac{4}{9}\)

c) Kẻ BK vuông góc DC.Suy ra tứ giác ABKD là hình chữ nhật vì có 4 góc vuông 

Nên BK = AD và AB = DK 

\(\Rightarrow KC=DC-DK=12-6=6\)

Theo định lý Pytago ta có

\(BC=\sqrt{BK^2+KC^2}=\sqrt{17^2+6^2}=5\sqrt{13}\)