\(\dfrac{DB}{DC}\times\dfrac{EC}...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 4 2022

Áp dụng t/c đường phân giác, ta có:

\(\dfrac{AB}{AC}=\dfrac{BD}{CD}\)   ( 1 )

\(\dfrac{BC}{BA}=\dfrac{EC}{EA}\)  ( 2 )

\(\dfrac{CA}{CB}=\dfrac{FA}{FB}\) ( 3 )

Nhân từng vế (1);(2);(3) ta được:

\(\dfrac{AB}{AC}\times\dfrac{BC}{BA}\times\dfrac{CA}{CB}=\dfrac{BD}{CD}\times\dfrac{EC}{EA}\times\dfrac{FA}{FB}\)

\(\Leftrightarrow1=\dfrac{BD}{CD}\times\dfrac{EC}{EA}\times\dfrac{FA}{FB}\)

 

7 tháng 4 2022

ADAD là đường phân giác ˆA→ABAC=DBDCA^→ABAC=DBDC

BEBE là đường phân giác ˆB→BCBA=ECEAB^→BCBA=ECEA

CFCF là đường phân giác ˆC→CACB=FAFBC^→CACB=FAFB

→DBDC.ECEA.FAFB=ABAC.BCBA.CACB=AB.BC.CAAC.BA.CB=1

24 tháng 6 2019

#)Giải :

Vì AD,BE,CF là ba đường phân giác

\(\Rightarrow\frac{FA}{FB}=\frac{CA}{CB};\frac{DB}{DC}=\frac{AB}{AC};\frac{EC}{EA}=\frac{BC}{BA}\)

\(\Rightarrow\frac{FA}{FB}.\frac{DB}{DC}.\frac{EC}{EA}=\frac{CA.AB.BC}{CB.AC.BA}=1\left(đpcm\right)\)

Tham khảo tại :

Câu hỏi của Phạm Hoàng - Toán lớp 8 | Học trực tuyến

< https://h.vn/hoi-dap/question/555217.html >

~ chúc bn học tốt~

1 tháng 6 2018

AD,BE,CF là phân giác

ta có \(\dfrac{FA}{FB}.\dfrac{DB}{DC}.\dfrac{EC}{EA}=\dfrac{AB}{AC}.\dfrac{BC}{BA}.\dfrac{CA}{CB}\)

do \(\dfrac{FA}{FB}=\dfrac{CA}{CB};\dfrac{DB}{DC}=\dfrac{AB}{AC};\dfrac{EC}{EA}=\dfrac{BC}{BA}\)

\(\dfrac{AB}{AC}.\dfrac{BC}{BA}.\dfrac{CA}{CB}=1\)

nên \(\dfrac{FA}{FB}.\dfrac{DB}{DC}.\dfrac{EC}{EA}=1\)

18 tháng 5 2017

A D E I B C M N

a) Xét \(\Delta ABD\)\(\Delta ACE\) ,có :

AD = AE ( Tam giác ADE cân tại A )

\(\widehat{ADE}=\widehat{AED}\) ( Tam giác ADE cân tại A )

BD = CE ( gt )

=> \(\Delta ABD=\Delta ACE\left(c.g.c\right)\)

=> AB = AC

=> \(\Delta ABC\) cân tại A

b) Xét \(\Delta BMD\)\(\Delta CNE\) ,có :

BD = CE ( gt )

\(\widehat{BMD}=\widehat{CNE}=90^0\)

\(\widehat{ADE}=\widehat{AED}\) ( Tam giác ADE cân tại A )
=> \(\Delta BMD=\Delta CNE\left(ch-gn\right)\)
=> BM = CN
c) Ta có :
\(\widehat{MBD}=\widehat{NCE}\) ( \(\Delta BMD=\Delta CNE\) )
\(\widehat{MBD}=\widehat{IBC},\widehat{NCE}=\widehat{ICB}\) ( 2 góc đối đỉnh )
=> \(\widehat{IBC}=\widehat{ICB}\)
=> Tam giác IBC cân tại I
d) \(\Delta IAB=\Delta IAC\left(c.c.c\right)\)
=> \(\widehat{IAB}=\widehat{IAC}\)
=> AI là tia phân giác của góc BAC
1 tháng 2 2018

a) Xét ∆ADE cân tại A nên góc D = góc E

Xét ∆ABD và ∆ACE, ta có:

AD = AE (gt)

góc D = góc E (chứng minh trên)

DB = EC (gt)

Suy ra: ∆ABD = ∆ACE (c.g.c)

Suy ra: AB = AC (hai cạnh tương ứng)

Vậy ∆ABC cân tại A.

b) Xét hai tam giác vuông BMD và CNE, ta có:

góc BMD=góc CNE=90o

BD = CE (gt)

góc D = góc E (chứng minh trên)

Suy ra: ∆BMD = ∆CNE (cạnh huyền, góc nhọn)

Suy ra: BM = CN (hai cạnh tương ứng)

c) Ta có: ∆BMD = ∆CNE (chứng minh trên)

Suy ra: góc DBM=góc ECN (hai góc tương ứng)

góc DBM=góc IBC (đối đỉnh)

góc ECN = góc ICB (đối đỉnh)

Suy ra: góc IBC=góc ICB hay ∆IBC cân tại I.

d) Xét ∆ABI và ∆ACI, ta có:

AB = AC (chứng minh trên)

IB = IC (vì ∆IBC cân tại I)

AI cạnh chung

Suy ra: ∆ABI = ∆ACI (c.c.c) ⇒ góc BAI=góc CAI (hai góc tương ứng)

Vậy AI là tia phân giác của góc BAC