K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 7 2019

Cần phần đảo với phần giới hạn (nếu có) thôi nha mọi người, em làm được phần thuận rồi.

29 tháng 7 2019

A B C H I M

Thuận: Lấy M là trung điểm BC. Khi đó IM là đường trung bình của \(\Delta\)BHC => IM // HC

Vì HC vuông góc BH nên IM vuông góc BH hay ^BIM = 900 => I thuộc đường tròn (MB)

M là trung điểm đoạn BC cố định => BM cố định => I di chuyển trên (MB) cố định.

Đảo: M là trung điểm BC, đường tròn (BM) cắt BH tại I. Có ngay MI // CH

Xét \(\Delta\)CBH có: M là trung điểm BC, MI // HC, I thuộc BH => I là trung điểm BH.

Giới hạn: Xét A không trùng với B,C. Theo chứng minh phần thuận thì I nằm trên (BM)

Xét A trùng B: Khi đó AC trùng BC. Mà BH vuông góc AC tại H nên H trùng B => I trùng B

Xét A trùng C: Suy ra BH trùng BC. Khi đó trung điểm I của BH trùng với M

Vậy điểm I di động trên cả đường tròn đường kính BM.

31 tháng 5 2018

Xét \(\Delta ABC\) có:

I là trung điểm BH(gt)

\(\Rightarrow I\in BH\)

\(\Rightarrow\) I nằm trên đường thẳng BH

31 tháng 5 2018

hình bạn tự vẽ nhé

24 tháng 7 2018

A B C D E I K O M Q P

Lấy P và Q lần lượt là trung điểm của AB và AC. Nối M với I & K.

Xét \(\Delta\)BMD: ^BMD = 900; ^MBD = 450 => \(\Delta\)BMD vuông cân tại M

Ta thấy I là trung điểm BD => MI vuông góc góc với BD => ^MIA = 900

Tương tự: ^MKA = 900 . Xét tứ giác AIMK có: ^IAK = ^MIA = ^MKA = 900

=> Tứ giác AIMK là hình chữ nhật. Ta có: O là trung điểm của đường chéo IK

=> O là trung điểm AM.

Xét \(\Delta\)BAM: P là trung điểm AB; O là trung điểm AM => OP là đg trung bình \(\Delta\)BAM

=> OP // BM hay OP // BC. Tương tự: OQ // BC => 3 điểm P;O;Q thẳng hàng (Theo tiên đề Ơ-clit)

=> O nằm trên đường trung bình PQ của \(\Delta\)ABC

Vậy khi M chạy trên cạnh BC của \(\Delta\)ABC thì trung điểm O của IK di động trên đg trung bình của \(\Delta\)ABC.