Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔMBD vuông tại D và ΔNCE vuông tại E có
DB=CE
\(\widehat{MBD}=\widehat{NCE}\left(=\widehat{ACB}\right)\)
Do đó: ΔMBD=ΔNCE
Suy ra: DM=EN
a, kẻ DC
xét tam giác BDC và tam giác ECD có : DC chung
BD = CE (Gt)
^BDC = ^CDE (slt; BD // CE)
=> tam giác BDC = tam giác ECD (c-g-c)
=> BC = DE (1)
và ^BCD = ^CDE (đn) mà 2 góc này slt
=> DE // BC
gọi En cắt BC tại P => ^DEP = ^BPG (đồng vị)
có ^BPG = ^ACB (đồng vị) do En // AC (Gt)
=> ^DEG = ^BCA (2)
gọi Dm cắt BC tại Q; DE // BC (cmt)
=> ^EDG = ^CQG (đồng vị)
^GQP = ^ABC (đồng vị) Dm // AB (Gt)
=> ^EDG = ^ABC (3)
(1)(2)(3) => tam giác ABC = tam giác GDE (c-g-c)
b, kẻ AE
tam giác ABC = tam giác GDE (Câu a) => GE = AC (đn)
xét tam giác AGE và tam giác ECA có : AE chung
^GEA = ^EAC (slt) GE // AC (gT)
=> tam giác AGE = tam giác ECA (c-g-c)
=> ^GAE = ^AEC mà 2 góc này slt
=> AG // CE (đl)
a) Vì ΔABCΔ��� cân tại A(gt)�(��)
=> ˆABC=ˆACB���^=���^ (tính chất tam giác cân).
Mà ˆACB=ˆNCE���^=���^ (vì 2 góc đối đỉnh).
=> ˆABC=ˆNCE.���^=���^.
Hay ˆMBD=ˆNCE.���^=���^.
Xét 2 ΔΔ vuông BDM��� và CEN��� có:
ˆBDM=ˆCEN=900(gt)���^=���^=900(��)
BD=CE(gt)��=��(��)
ˆMBD=ˆNCE(cmt)���^=���^(���)
=> ΔBDM=ΔCENΔ���=Δ��� (cạnh góc vuông - góc nhọn kề).
=> DM=EN��=�� (2 cạnh tương ứng).
b) Xét 2 ΔΔ vuông DMI��� và ENI��� có:
ˆMDI=ˆNEI=900(gt)���^=���^=900(��)
DM=EN(cmt)��=��(���)
ˆDIM=ˆEIN���^=���^ (vì 2 góc đối đỉnh)
=> ΔDMI=ΔENIΔ���=Δ��� (cạnh góc vuông - góc nhọn kề).
=> MI=NI��=�� (2 cạnh tương ứng).
=> I là trung điểm của MN.��.
Mà I∈BC(gt)�∈��(��)
=> Đường thẳng BC�� cắt MN�� tại trung điểm I của MN(đpcm).��(đ���).