K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1) Ta có: \(BC^2=5^2=25\)

\(AB^2+AC^2=3^2+4^2=25\)

Do đó: \(BC^2=AB^2+AC^2\)(=25)

Xét ΔABC có \(BC^2=AB^2+AC^2\)(cmt)

nên ΔABC vuông tại A(Định lí Pytago đảo)

Xét ΔABC vuông tại A có 

\(\sin\widehat{B}=\dfrac{AC}{BC}=\dfrac{4}{5}\)

2) 

a) Xét (A) có 

H∈(A)

BH⊥AH tại H(gt)

Do đó: BH là tiếp tuyến của (A)(Dấu hiệu nhận biết tiếp tuyến của đường tròn)

Xét (A) có 

H∈(A)

CH⊥AH tại H(gt)

Do đó: CH là tiếp tuyến của (A)(Dấu hiệu nhận biết tiếp tuyến đường tròn)

Xét (A) có 

CH là tiếp tuyến có H là tiếp điểm(cmt)

CE là tiếp tuyến có E là tiếp điểm(gt)

Do đó: AC là tia phân giác của \(\widehat{EAH}\)(Tính chất hai tiếp tuyến cắt nhau)

\(\widehat{EAH}=2\cdot\widehat{HAC}\)

Xét (A) có 

BH là tiếp tuyến có H là tiếp điểm(gt)

BD là tiếp tuyến có D là tiếp điểm(gt)

Do đó: AB là tia phân giác của \(\widehat{HAD}\)(Tính chất hai tiếp tuyến cắt nhau)

\(\widehat{HAD}=2\cdot\widehat{BAH}\)

Ta có: \(\widehat{EAH}+\widehat{HAD}=\widehat{EAD}\)(Tia AH nằm giữa hai tia AE,AD)

\(\Leftrightarrow2\cdot\widehat{BAH}+2\cdot\widehat{CAH}=\widehat{EAD}\)

\(\Leftrightarrow\widehat{EAD}=2\cdot\left(\widehat{BAH}+\widehat{CAH}\right)\)

\(\Leftrightarrow\widehat{EAD}=2\cdot90^0=180^0\)

hay E,A,D thẳng hàng(đpcm)