Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)\(12^2+16^2=20^2\)(144+256=400)
\(\Rightarrow AB^2+AC^2=BC^2\)(định lý pytago)
\(\Rightarrow\Delta ABC\)vuông tại A
b)Xét tg ABC vuông tại A có đcao AH(cmt)
Ta có:AB.AC=BC.AH(Hệ thức lượng)
12.16=20.AH
192=20.AH
AH=192:20=9.6
c)cosB=AB/BC,cosC=AC/BC
\(\Rightarrow\frac{AB.AB}{BC}+\frac{AC.AC}{BC}\)
\(\Rightarrow\frac{AB^2}{BC}+\frac{AC^2}{BC}=\frac{\left(AB^2+AC^2\right)}{BC}\)
\(\Rightarrow\frac{BC^2}{BC}=\frac{20^2}{20}=20\)
\(\Rightarrow AB.cosB+AC.cosC=20\)
a)AB=6cm,BC=10cm
∆ABC vuông tại A đg cao AH có
#\(AC^2=BC^2-AB^2\)
AC2=100-36=64
AC=8cm
# \(AB^2=BH.BC\)
36=BH.10
BH=3,6cm
# CH=BC-BH=10-3,6=6,4cm
# \(AH^2=BH.CH\)
AH2=3,6.6,4=23,04
AH=4,8cm
b)
∆ABC vuông tại A đg cao AH có
#\(AB^2=BC^2-AC^2\)
AB2=625-400=225
AB=15cm
# \(AB^2=BH.BC\)
225=BH.25
BH=9cm
# CH= BC-BH=25-9=16cm
# \(AH.BC=AB.AC\)
AH.25=15.20=300
AH=12cm
a: Xét ΔABC có
\(BC^2=AB^2+AC^2\)
nên ΔABC vuông tại A
b: Áp dụng hệ thức lượng trong tam giác vuông vào ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:
\(AB\cdot AC=AH\cdot BC\)
\(\Leftrightarrow AH\cdot20=12\cdot16=192\)
hay AH=9,6(cm)
1:
BC=15+20=35cm
AD là phân gíac
=>AB/BD=AC/CD
=>AB/3=AC/4=k
=>AB=3k; AC=4k
AB^2+AC^2=BC^2
=>25k^2=35^2
=>k=7
=>AB=21cm; AC=28cm
AH=21*28/35=16,8cm
\(AD=\dfrac{2\cdot21\cdot28}{21+28}\cdot cos45=12\sqrt{2}\left(cm\right)\)
2:
BC=căn 12^2+16^2=20cm
HB=AB^2/BC=12^2/20=7,2cm
HC=20-7,2=12,8cm
a: HB=12^2/16=9cm
BC=9+16=25cm
AB=căn 9*25=15cm
AC=căn 16*25=20cm
C ABC=15+20+25=40+20=60cm
b: ΔAHB vuông tại H có HM là đường cao
nên AM*AB=AH^2
ΔAHC vuông tại H có HN là đường cao
nên AN*AC=AH^2
=>AM*AB=AN*AC
c: BM*CN*BC
=BH^2/AB*CH^2/AC*AB*AC/AH
=BH^2*CH^2/AH
=AH^4/AH=AH^3
a) Áp dụng Pi-ta-go cho \(\Delta AHB\)vuông tại H ta có :
\(AH^2+HB^2=AB^2\)
\(\Leftrightarrow16^2+25^2=AB^2\)
\(\Leftrightarrow AB=\sqrt{881}\left(cm\right)\)
Áp dụng hệ thức về đường cao trong tam giác vuông ta có :
\(AH^2=HB\times HC\)
\(\Leftrightarrow16^2=25\times HC\)
\(\Leftrightarrow HC=10,24\left(cm\right)\)
Ta có : \(BC=CH+BH=10,24+25=35,24\left(cm\right)\)
Áp dụng Pi-ta-go cho \(\Delta ABC\)vuông tại A ta có :
\(AC^2=BC^2-AB^2\)
\(\Leftrightarrow AC^2=35,24^2-\sqrt{881}^2\)
\(\Leftrightarrow AC=360,8576\left(cm\right)\)
b) Áp dụng Pi-ta-go cho \(\Delta AHB\)vuông tại H ta có :
\(AH^2=AB^2-HB^2\)
\(\Leftrightarrow AH^2=12^2-6^2\)
\(\Leftrightarrow AH=6\sqrt{3}\left(cm\right)\)
Áp dụng hệ thức trong tam giác ta có :
\(AH^2=CH\times HB\)
\(\Leftrightarrow CH=18\left(cm\right)\)
Ta có : \(BC=CH+BH=18+6=24\left(cm\right)\)
Áp dụng Pi-ta-go cho \(\Delta ABC\)vuông tại A ta có :
\(AC^2=BC^2-AB^2\)
\(\Leftrightarrow AC^2=24^2-12^2\)
\(\Leftrightarrow AC=12\sqrt{3}\left(cm\right)\)
Vậy ...
a) A C H B 16 25
- Áp dụng định lí Py - ta - go cho tam giác vuông HAB ( \(\widehat{H}=90^o\))
\(AB^2=BH^2+AH^2\)
\(=25^2+16^2\)
\(=625+256=881\)
\(\Rightarrow AB=\sqrt{881}\approx29,6\left(cm\right)\)
- Áp dụng hệ thức lượng trong tam giác ABC ( \(\widehat{A}=90^o\)) , đường cao AH , ta có :
+) AH2 = HB . HC
\(16^2=25.HC\)
\(HC=\frac{16^2}{25}=\frac{256}{25}=10,24\left(cm\right)\)
+) BC = BH + HC = 25 + 10,24 = 35,24 ( cm )
\(+)AC^2=HC.BC=10,24.35,24\approx360,86\left(cm\right)\)
\(\Rightarrow AC=\sqrt{360,86}\approx18,9cm\)
Vậy : ..................
b) A B H C 6 12
- Áp dụng định lí Py - ta - go cho tam giác vuông AHB ( \(\widehat{H}=90^o\)) , ta có :
AB2 = BH2 + AH2
122 = 62 + AH2
AH2 = 122 - 62
= 144 - 366 = 108 ( cm )
\(\Rightarrow AH=\sqrt{108}\approx10,39\left(cm\right)\)
- Áp dụng hệ thức lượng cho tam giác ABC ( \(\widehat{A}=90^o\)) , đường cao AH , ta có :
\(+)AH^2=BH.HC\Rightarrow HC=\frac{AH^2}{BH}=\frac{10,39^2}{6}=17,99\left(cm\right)\)
\(+)BC=BH+HC=6+17,99=23,99\left(cm\right)\)
\(+)AC^2=BC.HC=23,99.17,99=431,58\left(cm\right)\)
\(+)AC=\sqrt{431,58}\approx20,77\left(cm\right)\)
Vậy : ....................
Xét ΔABC có
\(BC^2=AB^2+AC^2\)
nên ΔABC vuông tại A
Ta có: \(BC\cdot\cos\widehat{C}\cdot\sin\widehat{C}\)
\(=BC\cdot\dfrac{AC}{BC}\cdot\dfrac{AB}{BC}\)
\(=\dfrac{AB\cdot AC}{BC}\)
=AH