Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A B C M N 1 2 1 2
Giải :a) Xét tam giác ABM và tam giác NCM
có BM = CM (gt)
M1 = M2 (đối đỉnh)
AM = NM (gt)
=> tam giác ABM = tam giác NCM (c.g.c) (Đpcm)
b) Do tam giác ABM = tam giác NCM (CM ở câu trên)
=> góc A = góc N (hai góc tương ứng bằng nhau)
Mà góc A và góc N ở vị trí so le trong
=> AB // MC (Đpcm)
c) Xét tam giác ABM và tam giác ACM
có AB = AC (gt)
AM chung
Bn = CM (gt)
=> tam giác ABM = tam giác ACM (c.c.c)
=> góc M1 = góc M3 ( hai góc tương ứng)
Mà M1 + M3 = 1800 (kề bù)
hay 2M1 = 1800
=> M1 = 1800 : 2 = 900
=> AM vuông góc với BC (Đpcm)
a) Xét tgiac ABM và tgiac ACM có:
AB = AC (gt)
góc ABM = góc ACM (gt)
MB = MC (gt)
suy ra: tgiac ABM = tgiac ACM (c.g.c)
b) tgiac ABM = tgiac ACM
=> góc AMB = góc AMC
mà góc AMB + góc AMC = 1800
=> góc AMB = góc AMC = 900
hay AM vuông góc với BC
c) Xét tgiac MBK và tgiac MCA có
MB = MC (gt)
góc BMK = góc CMA (dd)
MK = MA (gt)
suy ra: tgiac MBK = tgiac MCA (c.g.c)
=> góc MBK = góc MCA
mà 2 góc này so le trong
=> BK // MC
A B C M K
CM : Xét tam giác ABM và tam giác ACM
có AB = AC (gt)
BM = CM (gt)
AM : chung
=> tam giác ABM = tam giác ACM (c.c.c)
b) Ta có : Tam giác ABM = tam giác ACM (cmt)
=> góc BMA = góc AMC (hai góc tương ứng)
Mà góc BMA + góc AMC = 1800 ( kề bù )
hay 2\(\widehat{BMA}\)= 1800
=> góc BMA = 1800 : 2
=> góc BMA = 900
c) Xét tam giác AMK và tam giác CMA
có MK = MA (gt)
góc BMK = góc AMC ( đối đỉnh)
BM = CM (gt)
=> tam giác AMK = tam giác CMA (c.g.c)
=> góc KBM = góc MCA (hai góc tương ứng)
Mà góc KBM và góc MCA ở vị trí so le trong
=> Bk // AC
a b c m d 1 2 3 4 e f
Xét T/G ABC và DCM
CÓ ; M1=M2 ( đối đỉnh) CM=BM (M là trung điểm BC) AM=MD (gt) -> ABC=DCM(CgC)
Có T/G ABC=DCM -> Góc D=BAM(2 góc tương ứng )mà 2 góc Sole trong -> AB//DC
C) Xét T/G BFM và CEM có CM=MB(GT) E3=F4=90 độ M4=M3 ( đối đỉnh) -> BFM=CEM(g.c.g)
-> ME=MF -> M là trung điểm EF
A B C M D E F
a, Xét t/g ABM và t/g DCM có:
AM=DM(gt)
BM=CM(gt)
góc AMB=góc DMC (đối đỉnh)
=>t/g ABM=t/g DCM (c.g.c)
b, Vì t/g ABM=t/g DCM (cmt) => góc ABM = góc DCM (2 góc t/ứ)
Mà 2 góc này là cặp góc so le trong
=> AB//DC
c, Xét t/g BEM và t/g CFM có:
góc BEM = góc CFM = 90 độ (gt)
BM=CN(gt)
góc BME = góc CMF (đối đỉnh)
=>t/g BEM = t/g CFM (cạnh huyền - góc nhọn)
=>EM=FM (2 cạnh t/ứ)
=>M là trung điểm của EF
bài 2
a,
ta có AH vuông góc với CB
=> góc AHC = góc AHB = 90 độ
tam giác ABC cân tại A
=> AB = AC và góc ABH = góc ACH
xét 2 tam giác AHB và AHC
có góc AHC = góc AHB = 90 độ (cmt)
AB = AC (cmt)
góc ABH = góc ACH (cmt )
=> tam giác AHB = tam giác AHC ( cạnh huyền góc nhọn )(đpcm)
b,
từ a có tam giác AHB = tam giác AHC (canh huyền góc nhọn )
=> BH = CH ( 2 cạnh tương ứng )
và góc HAB = góc HAC ( 2 góc tương ứng ) (1)
xét hai tam giác BHM và CHN
có BMH = 90độ ( HM vuông góc với AB )
BH = CH ( cmt)
góc ABH = góc ACH (hai góc cạnh đáy của tam giác ABC cân tại A )
=> tam giác BHM = tam giác CHN ( cạnh huyền góc nhọn )
=> CN = BM ( 2 cạnh tương ứng )
mà AB = AC (hai cạnh khác đáy của tam giác cân ABC )
=> AB - BM = AC - CN
=> AM = AN
=> tam giác AMN cân
c, xét 2 tam giác AMO và ANO
có góc HAC = góc HAB (từ 1)
AM = AN (cmt)
AO là cạnh chung
=> tam giác AMO = tam giác ANO (c.g.c)
=> góc AON = góc AOM (2 góc tương ứng )
mà góc AON + góc AOM = 180 độ (2 góc kề bù )
=> góc AON = góc AOM = 90 độ
=> MN vuông góc với AO ( hay AH )
mà BC cũng vuông góc với AH ( gt)
=> MN // BC ( đpcm )
bài 1
a, xét 2 tam giác ABM và ECM
có AM = EM (gt)
góc AMB = góc EMC ( 2 góc đối đỉnh )
BM = CM ( M là trung điểm của BC )
=> tam giác ABM = tam giác ECM ( c.g.c ) (đpcm)
b, từ a có tam giác ABM = tam giác ECM ( c.g.c )
=> góc ABM = góc ECM ( 2 góc tương ứng )
mà hai góc đó nằm ở vị trí so le trong nên AB // CE (đpcm )
a/ Xét tg ABM và tg ACM có
AB = AC ( gt)
BM = CM ( gt)
AM chung
=> tg ABM = tg ACM (ccc)
b/ ( Trên tia đối của tia MA chứ ko phải AM nha )
Xét tg AMC và tg DMB, có
MC = MB (gt)
AM = MD ( gt)
^AMC = ^BMD ( đđ )
=> tg AMC = tg DMB ( cgc)
=> AC = BD
c/ tg ABC cân tại A có AM là đường trung tuyến
=> AM cũng là đường cao
=> AD vuông góc BC (1)
Lại có AM = MD , BM = MC ( gt) (2)
Từ (1), (2) => ABCD là hình thoi
=> AB // CD
d/ Theo đề : AI // BC , AI = BC
=> ABCI là hình bình hành
=> AB // CI
Mà AB // BC ( cmt )
=> I , C ,D thẳng hàng
(tự vẽ hình )
câu 4:
a) có AB2 + AC2 = 225
BC2 = 225
Pytago đảo => \(\Delta ABC\)vuông tại A
b) Xét \(\Delta MAB\)và \(\Delta MDC\)
MA = MD (gt)
BM = BC ( do M là trung điểm của BC )
\(\widehat{AMB}=\widehat{CMD}\)( hai góc đối đỉnh )
=> \(\Delta MAB\)= \(\Delta MDC\) (cgc)
c) vì \(\Delta MAB\)= \(\Delta MDC\)
=> \(\hept{\begin{cases}AB=DC\\\widehat{MAB}=\widehat{MDC}\end{cases}}\)
=> AB// DC
lại có AB \(\perp\)AC => DC \(\perp\)AC => \(\Delta KCD\)vuông tại C
Xét \(\Delta\) vuông ABK và \(\Delta\)vuông KCD:
AB =CD (cmt)
AK = KC ( do k là trung điểm của AC )
=> \(\Delta\)vuông AKB = \(\Delta\)vuông CKD (cc)
=> KB = KD
d. do KB = KD => \(\Delta KBD\)cân tại K
=> \(\widehat{KBD}=\widehat{KDB}\)(1)
có \(\Delta ADC\)vuông tại C => \(AD=\sqrt{AC^2+DC^2}=15\)
=> MD = 7.5
mà MB = 7.5
=> MB = MD
=> \(\Delta MBD\)cân tại M
=> \(\widehat{MBD}=\widehat{MDB}\)(2)
Từ (1) và (2) => \(\widehat{KBD}-\widehat{MBD}=\widehat{KDB}-\widehat{MDB}\)hay \(\widehat{KBM}=\widehat{KDM}\)
Xét \(\Delta KBI\)và \(\Delta KDN\)có:
\(\widehat{KBI}=\widehat{KDN}\)(cmt)
\(\widehat{KBD}\)chung
KD =KB (cmt)
=> \(\Delta KBI\)= \(\Delta KDN\)(gcg)
=> KN =KI
=. đpcm
câu 5:
a) Xét \(\Delta ABM\)và \(\Delta MDC\):
MA=MD(gt)
MB=MC (M là trung điểm của BC)
\(\widehat{BMA}=\widehat{DMC}\)( đối đỉnh )
=> \(\Delta BMA=\Delta CMD\)(cgc)
b) Xét \(\Delta\)vuông ABC
có AM là đường trung tuyến của tam giác
=> \(AM=\frac{1}{2}BC\)mà \(BM=MC=\frac{1}{2}BC\)(do M là trung điểm của BC )
=> AM = BM = MC
có MA =MD => AM = MD =MB =MC
=> BM +MC = AM +MD hay BC =AD
Xét \(\Delta BAC\)và \(\Delta DCA\)
AB =DC
AC chung
BC =DC
=> \(\Delta BAC\)= \(\Delta DCA\)(ccc)
c. Xét \(\Delta ABM\)
BM=AM
\(\widehat{ABM}\)= 600
=> đpcm