K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 12 2018

A B C M N 1 2 1 2

Giải :a) Xét tam giác ABM và  tam giác NCM

có BM = CM (gt)

    M1 = M2 (đối đỉnh)

    AM = NM (gt)

=> tam giác ABM = tam giác NCM (c.g.c) (Đpcm)

b) Do tam giác ABM = tam giác NCM (CM ở câu trên)

=> góc A = góc N (hai góc tương ứng bằng nhau)

Mà góc A và góc N ở vị trí so le trong

=> AB // MC (Đpcm)

c) Xét tam giác ABM và tam giác ACM

có AB = AC (gt)

   AM chung

    Bn = CM (gt)

=> tam giác ABM = tam giác ACM (c.c.c)

=> góc M1 = góc M3 ( hai góc tương ứng)

Mà M1 + M3 = 1800 (kề bù)

hay 2M1 = 1800

=> M1 = 1800 : 2 = 900

=> AM vuông góc với BC (Đpcm)

7 tháng 1 2019

a)  Xét tgiac ABM và tgiac ACM có:

AB = AC (gt)

góc ABM = góc ACM (gt)

MB = MC (gt)

suy ra:  tgiac ABM = tgiac ACM   (c.g.c)

b) tgiac ABM = tgiac ACM 

=>  góc AMB = góc AMC

mà góc AMB + góc AMC = 1800

=>  góc AMB = góc AMC = 900

hay AM vuông góc với BC

c)  Xét tgiac MBK và tgiac MCA có

MB = MC (gt)

góc BMK = góc CMA (dd)

MK = MA (gt)

suy ra: tgiac MBK = tgiac MCA   (c.g.c)

=>  góc MBK = góc MCA 

mà 2 góc này so le trong

=>   BK // MC

7 tháng 1 2019

A B C M K

CM : Xét tam giác ABM và tam giác ACM

có AB = AC (gt)

  BM = CM (gt)

 AM : chung

=> tam giác ABM = tam giác ACM (c.c.c)

b) Ta có : Tam giác ABM = tam giác ACM (cmt)

=> góc BMA = góc AMC (hai góc tương ứng)

Mà góc BMA + góc AMC = 1800 ( kề bù )

 hay 2\(\widehat{BMA}\)= 1800

=> góc BMA = 1800 : 2

=> góc BMA = 900

c) Xét tam giác AMK và tam giác CMA

có MK = MA (gt)

  góc BMK = góc AMC ( đối đỉnh)

  BM = CM (gt)

=> tam giác AMK = tam giác CMA (c.g.c)

=> góc KBM = góc MCA (hai góc tương ứng)

Mà góc KBM và góc MCA ở vị trí so le trong

=> Bk // AC

Bài 1: Cho tam giác ABC; M là trung điểm của AB, N là trung điểm của AC. Trên tia đối của tia NM lấy D sao cho ND=NM. Chứng minh: a) DC= \(\frac{1}{2}\)AB và DC // ACb) AD=MCc) MN // BC và MN =\(\frac{1}{2}\)BCBài 2: tam giác ABC có góc BAC = 90 độ và AB < AC. Trên tia đối của tia BA lấy điểm E sao cho AE = AC. Trên tia đối của tia AC lấy điểm D sao cho AD = AB. Gọi M là trung điểm của BC; N là trung điểm của DE. Đường...
Đọc tiếp

Bài 1: Cho tam giác ABC; M là trung điểm của AB, N là trung điểm của AC. Trên tia đối của tia NM lấy D sao cho ND=NM. Chứng minh: 

a) DC= \(\frac{1}{2}\)AB và DC // AC

b) AD=MC

c) MN // BC và MN =\(\frac{1}{2}\)BC

Bài 2: tam giác ABC có góc BAC = 90 độ và AB < AC. Trên tia đối của tia BA lấy điểm E sao cho AE = AC. Trên tia đối của tia AC lấy điểm D sao cho AD = AB. Gọi M là trung điểm của BC; N là trung điểm của DE. Đường thẳng BC cắt DE tại H. Chứng minh:

a) DE=BC

b) BC\(\perp\)DE tại H

c) AN = AM và AN\(\perp\)AM

Bài 3: Cho tam giác ABC có góc A > 90 độ, M là trung điểm của BC. Từ B kẻ đường thẳng song song với AC cắt đường thẳng AM tại N. Trên nửa mặt phẳng bờ AB không chứa C vẽ tia Ax \(\perp\)AB, trên Ax lấy điểm D sao cho AD = AB. Trên nửa mặt phẳng bờ AC không chứa B vẽ tia Ay \(\perp\)AC, trên Ay lấy điểm E sao cho AE = AC. Chứng minh:

a) BN = CA

b) góc BAC + góc DAE = 180 độ 

c) AM = \(\frac{1}{2}\)DE

Nhớ vẽ hình hộ mik nha :))

 

0
22 tháng 12 2017

a b c m d 1 2 3 4 e f

Xét T/G ABC và DCM 

CÓ ; M1=M2 ( đối đỉnh) CM=BM (M là trung điểm BC) AM=MD (gt) -> ABC=DCM(CgC)

Có T/G ABC=DCM ->  Góc D=BAM(2 góc tương ứng )mà 2 góc Sole trong -> AB//DC

C) Xét T/G BFM và CEM  có CM=MB(GT) E3=F4=90 độ M4=M3 ( đối đỉnh) ->  BFM=CEM(g.c.g)

-> ME=MF ->  M là trung điểm EF 

22 tháng 12 2017

A B C M D E F

a, Xét t/g ABM và t/g DCM có:

AM=DM(gt)

BM=CM(gt)

góc AMB=góc DMC (đối đỉnh)

=>t/g ABM=t/g DCM (c.g.c)

b, Vì t/g ABM=t/g DCM (cmt) => góc ABM = góc DCM (2 góc t/ứ)

Mà 2 góc này là cặp góc so le trong

=> AB//DC

c, Xét t/g BEM và t/g CFM có:

góc BEM = góc CFM = 90 độ (gt)

BM=CN(gt)

góc BME = góc CMF (đối đỉnh)

=>t/g BEM = t/g CFM (cạnh huyền - góc nhọn)

=>EM=FM (2 cạnh t/ứ)

=>M là trung điểm của EF

19 tháng 2 2020

bài 2

Chương II : Tam giác

a,

ta có AH vuông góc với CB

=> góc AHC = góc AHB = 90 độ

tam giác ABC cân tại A

=> AB = AC và góc ABH = góc ACH

xét 2 tam giác AHB và AHC

có góc AHC = góc AHB = 90 độ (cmt)

AB = AC (cmt)

góc ABH = góc ACH (cmt )

=> tam giác AHB = tam giác AHC ( cạnh huyền góc nhọn )(đpcm)

b,

từ a có tam giác AHB = tam giác AHC (canh huyền góc nhọn )

=> BH = CH ( 2 cạnh tương ứng )

và góc HAB = góc HAC ( 2 góc tương ứng ) (1)

xét hai tam giác BHM và CHN

có BMH = 90độ ( HM vuông góc với AB )

BH = CH ( cmt)

góc ABH = góc ACH (hai góc cạnh đáy của tam giác ABC cân tại A )

=> tam giác BHM = tam giác CHN ( cạnh huyền góc nhọn )

=> CN = BM ( 2 cạnh tương ứng )

mà AB = AC (hai cạnh khác đáy của tam giác cân ABC )

=> AB - BM = AC - CN

=> AM = AN

=> tam giác AMN cân

c, xét 2 tam giác AMO và ANO

có góc HAC = góc HAB (từ 1)

AM = AN (cmt)

AO là cạnh chung

=> tam giác AMO = tam giác ANO (c.g.c)

=> góc AON = góc AOM (2 góc tương ứng )

mà góc AON + góc AOM = 180 độ (2 góc kề bù )

=> góc AON = góc AOM = 90 độ

=> MN vuông góc với AO ( hay AH )

mà BC cũng vuông góc với AH ( gt)

=> MN // BC ( đpcm )

19 tháng 2 2020

bài 1 undefined

a, xét 2 tam giác ABM và ECM

có AM = EM (gt)

góc AMB = góc EMC ( 2 góc đối đỉnh )

BM = CM ( M là trung điểm của BC )

=> tam giác ABM = tam giác ECM ( c.g.c ) (đpcm)

b, từ a có tam giác ABM = tam giác ECM ( c.g.c )

=> góc ABM = góc ECM ( 2 góc tương ứng )

mà hai góc đó nằm ở vị trí so le trong nên AB // CE (đpcm )

19 tháng 12 2018

a/ Xét tg ABM và tg ACM có

AB = AC ( gt)

BM = CM ( gt)

AM chung

=> tg ABM = tg ACM (ccc)

b/ ( Trên tia đối của tia MA chứ ko phải AM nha )

Xét tg AMC và tg DMB, có

MC = MB (gt)

AM = MD ( gt)

^AMC = ^BMD ( đđ )

=> tg AMC = tg DMB ( cgc)

=> AC = BD

c/ tg ABC cân tại A có AM là đường trung tuyến

=> AM cũng là đường cao

=> AD vuông góc BC (1)

Lại có AM = MD , BM = MC ( gt) (2)

Từ (1), (2) => ABCD là hình thoi 

=> AB // CD

d/ Theo đề : AI // BC , AI = BC

=> ABCI là hình bình hành

=> AB // CI

Mà AB // BC ( cmt )

=> I , C ,D thẳng hàng

29 tháng 3 2019

Bạn hiền, tôi đây chưa học hình bình hành!!!

Câu 4. Cho tam giác ABC có AB = 9cm, AC = 12cm, BC = 15cm, gọi M là trung điểm của BC. Trên tia đối của tia MA lấy điểm D sao cho MD = MA. a) Chứng minh tam giác ABC vuông tại A. b) CM: \(\Delta MAB\) = \(\Delta MDC\). c) Gọi K là trung điểm của AC chứng minh KD = KB. d) KD cắt BC tịa I, KB cắt AD tại N chứng minh \(\Delta KNI\) cân. Câu 5. Cho tam giác ABC vuông ở A , có C = 300 . Gọi M là trung điểm của BC, trên tia đối...
Đọc tiếp

Câu 4. Cho tam giác ABC có AB = 9cm, AC = 12cm, BC = 15cm, gọi M là trung điểm của BC. Trên tia đối của tia MA lấy điểm D sao cho MD = MA. a) Chứng minh tam giác ABC vuông tại A. b) CM: \(\Delta MAB\) = \(\Delta MDC\). c) Gọi K là trung điểm của AC chứng minh KD = KB. d) KD cắt BC tịa I, KB cắt AD tại N chứng minh \(\Delta KNI\) cân.

Câu 5. Cho tam giác ABC vuông ở A , có C = 300 . Gọi M là trung điểm của BC, trên tia đối của tia MA lấy điểm D sao cho MD = MA. a/ Chứng minh : AB = CD. b/ Chứng minh: \(\Delta BAC=\Delta DAC\). c/ Chứng minh : \(\Delta ABM\) là tam giác đều.

Câu 6. Cho tam giác ABC vuông ở B, gọi M là trung điểm của BC . Trên tia đối của tia MA lấy điểm E sao cho ME = MA. Chứng minh: a/ \(\Delta ABM=\Delta ECM\). b/ AC > CE. c/ góc BAM>góc MAC

4
1 tháng 5 2020

(tự vẽ hình )

câu 4:

 a) có AB2 + AC= 225

BC= 225

Pytago đảo => \(\Delta ABC\)vuông tại A

b) Xét \(\Delta MAB\)và \(\Delta MDC\)

MA = MD (gt)

BM = BC ( do M là trung điểm của BC ) 

\(\widehat{AMB}=\widehat{CMD}\)( hai góc đối đỉnh )

=> \(\Delta MAB\)\(\Delta MDC\) (cgc)

c) vì \(\Delta MAB\)\(\Delta MDC\)

=> \(\hept{\begin{cases}AB=DC\\\widehat{MAB}=\widehat{MDC}\end{cases}}\)

=> AB// DC

lại có AB \(\perp\)AC => DC \(\perp\)AC => \(\Delta KCD\)vuông tại C

Xét \(\Delta\) vuông ABK và \(\Delta\)vuông KCD:

AB =CD (cmt)

AK = KC ( do k là trung điểm của AC )

=> \(\Delta\)vuông AKB = \(\Delta\)vuông CKD (cc)

=> KB = KD

d. do KB = KD => \(\Delta KBD\)cân tại K

=> \(\widehat{KBD}=\widehat{KDB}\)(1)

có \(\Delta ADC\)vuông tại C => \(AD=\sqrt{AC^2+DC^2}=15\)

=> MD = 7.5

mà MB = 7.5

=> MB = MD 

=> \(\Delta MBD\)cân tại M

=> \(\widehat{MBD}=\widehat{MDB}\)(2)

Từ (1) và (2) => \(\widehat{KBD}-\widehat{MBD}=\widehat{KDB}-\widehat{MDB}\)hay \(\widehat{KBM}=\widehat{KDM}\)

Xét \(\Delta KBI\)và \(\Delta KDN\)có:

\(\widehat{KBI}=\widehat{KDN}\)(cmt)

\(\widehat{KBD}\)chung

KD =KB (cmt) 

=> \(\Delta KBI\)\(\Delta KDN\)(gcg)

=> KN =KI 

=. đpcm

1 tháng 5 2020

câu 5: 

a) Xét \(\Delta ABM\)và \(\Delta MDC\):

MA=MD(gt)

MB=MC (M là trung điểm của BC)

\(\widehat{BMA}=\widehat{DMC}\)( đối đỉnh )

=> \(\Delta BMA=\Delta CMD\)(cgc)

b) Xét \(\Delta\)vuông ABC 

có AM là đường trung tuyến của tam giác 

=> \(AM=\frac{1}{2}BC\)mà \(BM=MC=\frac{1}{2}BC\)(do M là trung điểm của BC )

=> AM = BM = MC 

có MA =MD => AM = MD =MB =MC

=> BM +MC = AM +MD hay BC =AD

Xét \(\Delta BAC\)và \(\Delta DCA\)

AB =DC

AC chung

BC =DC

=> \(\Delta BAC\)\(\Delta DCA\)(ccc)

c. Xét \(\Delta ABM\)

BM=AM

\(\widehat{ABM}\)= 600

=> đpcm