K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 11 2017

muốn giúp lắm nhưng mới lớp 7 chỉ bt làm phần a,d nghĩ bài a,d là toán lớp 7

4 tháng 7 2018

ai k dung mik giai cho

22 tháng 10 2018

A B C M H N

a) Ta có \(AB^2+AC^2=6^2+8^2=100\)

\(BC^2=10^2=100\)

=> \(AB^2+AC^2=BC^2\)

=> Tam giác ABC vuông tại A ( định lí Py-ta-go đảo )

22 tháng 10 2018

b) Ta có \(2S_{ABC}=AB\cdot AC=AH\cdot BC\)

Hay \(6\cdot8=10\cdot AH\)

=> \(AH=\dfrac{6\cdot8}{10}=\dfrac{48}{10}=4,8cm\)

Áp dụng định lí Py-ta-go vào tam giác vuông BHA ta có :

\(AB^2=AH^2+BH^2\)

=> \(BH^2=AB^2-AH^2\)

Hay \(BH^2=6^2-4,8^2=12,96\)

=> \(BH=\sqrt{12,96}=3,6cm\)

Ta có \(\widehat{BAC}=\widehat{AMH}=\widehat{ANH}=90^o\)

=> AMNH là hình chữ nhật

=> MN = AH ( Vì MN,AH là đường chéo hình chữ nhật )

=> MN = 4,8cm

21 tháng 10 2021

a, BC=BH+HC=8BC=BH+HC=8

Áp dụng HTL: 

⎧⎪⎨⎪⎩AB2=BH⋅BC=16AC2=CH⋅BC=48AH2=CH⋅BC=12⇒⎧⎪ ⎪⎨⎪ ⎪⎩AB=4(cm)AC=4√3(cm)AH=2√3(cm){AB2=BH⋅BC=16AC2=CH⋅BC=48AH2=CH⋅BC=12⇒{AB=4(cm)AC=43(cm)AH=23(cm)

b,b, Vì K là trung điểm AC nên AK=12AC=2√3(cm)AK=12AC=23(cm)

Ta có tanˆAKB=ABAK=42√3=2√33≈tan490tan⁡AKB^=ABAK=423=233≈tan⁡490

⇒ˆAKB≈490

Câu 1: 

a: Xét ΔAHB vuông tạiH có HD là đường cao

nên \(AD\cdot AB=AH^2\left(1\right)\)

Xét ΔAHC vuông tại H có HE là đường cao

nên \(AE\cdot AC=AH^2\left(2\right)\)

Từ (1) và (2) suy ra \(AD\cdot AB=AE\cdot AC\)

b: \(BC=\sqrt{4^2+6^2}=2\sqrt{13}\left(cm\right)\)

\(AH=\dfrac{4\cdot6}{2\sqrt{13}}=\dfrac{12}{\sqrt{13}}\left(cm\right)\)

\(AE=\dfrac{AH^2}{AC}=\dfrac{144}{13}:6=\dfrac{24}{13}\left(cm\right)\)

 

1 tháng 9 2021

a, Xét tam giác AHB vuông tại H, đường cao MH 

\(AH^2=AM.AB\)( hệ thức lượng ) (1) 

Xét tam giác AHC vuông tại H, đường cao HN 

\(AH^2=AN.AC\)( hệ thức lượng ) (2) 

Từ (1) ; (2) suy ra : \(AM.AB=AN.AC\)(3) 

b, Xét tam giác AMN và tam giác ACB ta có : 

^A _ chung 

\(\left(3\right)\Rightarrow\frac{AM}{AC}=\frac{AN}{AB}\)

Vậy tam giác AMN ~ tam giác ACB ( c.g.c )

\(\frac{MN}{BC}=\frac{AM}{AC}\)(4) 

Ta có : BC = HB + HC = 9 + 4 = 13 cm 

Xét tam giác ABC vuông tại A, đường cao AH

* Áp dụng hệ thức : \(AC^2=HC.BC=9.13=117\Rightarrow AC=3\sqrt{13}\)cm 

Theo định lí Pytago : \(AB=\sqrt{BC^2-AC^2}=\sqrt{169-\left(3\sqrt{13}\right)^2}=2\sqrt{13}\)cm 

* Áp dụng hệ thức : \(AH.BC=AB.AC\Rightarrow AH=\frac{AB.AC}{BC}=\frac{2\sqrt{13}.3\sqrt{13}}{13}=6\)cm 

lại có : \(AH^2=AM.AB\)cma => \(AM=\frac{36}{2\sqrt{13}}=\frac{18\sqrt{13}}{13}\)cm 

Thay vào (4) ta được : \(\frac{MN}{13}=\frac{\frac{18\sqrt{13}}{13}}{3\sqrt{13}}=6\)cm 

c, Lại có : \(AH^2=AN.AC\)cma => \(AN=\frac{36}{3\sqrt{13}}=\frac{12\sqrt{13}}{13}\)cm 

Ta có : \(S_{AMN}=\frac{1}{2}AN.AM=\frac{1}{2}.\frac{12\sqrt{13}}{13}.\frac{18\sqrt{13}}{13}=\frac{108}{13}\)cm 2

\(S_{ABC}=\frac{1}{2}AB.AC=\frac{1}{2}.2\sqrt{13}.3\sqrt{13}=39\)cm 2

Do \(S_{AMN}+S_{BMNC}=S_{ABC}\Rightarrow S_{BMNC}=S_{ABC}-S_{AMN}\)

\(=39-\frac{108}{13}=\frac{399}{13}\)cm2