K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
23 tháng 8 2020

Hình vẽ:

Violympic toán 9

AH
Akai Haruma
Giáo viên
23 tháng 8 2020

Lời giải:

a) Tứ giác $BFEC$ có 2 góc $\widehat{BFC}=\widehat{BEC}=90^0$ và cùng nhìn cạnh $BC$ nên $BFEC$ là tứ giác nội tiếp.

$\Rightarrow \widehat{EBC}=\widehat{CFE}=45^0$

$\Rightarrow \widehat{ACB}=\widehat{ECB}=90^0-\widehat{EBC}=90^0-45^0=45^0$

b)

Xét tam giác $CHD$ và $ABD$ có:

$\widehat{CDH}=\widehat{ADB}=90^0$

$\widehat{HCD}=\widehat{BAD}(=90^0-\widehat{B}$)

$\Rightarrow \triangle CHD\sim \triangle ABD$ (g.g)

$\Rightarrow \frac{CH}{AB}=\frac{HD}{BD}$

Mà ở phần a ta chỉ ra $\widehat{EBC}=45^0$ nên $\widehat{HBD}=45^0$

$\Rightarrow \triangle HBD$ vuông cân tại $D$. Do đó $HD=BD$

$\Rightarrow CH=AB=10$ (cm)

Dễ chứng minh $AEDB$ là tứ giác nội tiếp

$\Rightarrow \triangle AHB\sim \triangle EHD$ (g.g)

$\Rightarrow \frac{AB}{ED}=\frac{HB}{HD}=\sqrt{2}$ (do $HBD$ là tg vuông cân tại $D$)

$\Rightarrow ED=\frac{AB}{\sqrt{2}}=\frac{10}{\sqrt{2}}=5\sqrt{2}$ (cm)

 

 

AH
Akai Haruma
Giáo viên
23 tháng 8 2020

Bạn tham khảo lời giải tại đây:

Câu hỏi của Potato Pear Sweet - Toán lớp 9 | Học trực tuyến

11 tháng 4 2020

Tứ giác FEAH có: \(\widehat{FAH}=\widehat{AEH}=90^o\)

=> Tứ giác FEAH nội tiếp => \(\widehat{HEF}=\widehat{FAH}\)

Tứ giác ABDE có: \(\widehat{ADB}=\widehat{AEB}=90^o\)

=> Tứ giác ABDE nội tiếp => \(\widehat{BAD}=\widehat{BED}\)

Vậy \(\widehat{HEF}=\widehat{BED}\)

Xét \(\Delta\)HIE \(\left(\widehat{HIE}=90^o\right)\)và \(\Delta\)HKE \(\left(\widehat{HKE}=90^o\right)\)có:

EH chung

\(\widehat{HEI}=\widehat{HEK}\)

=> \(\Delta HIE=\Delta HKE\) (cạnh huyền-góc nhọn)

=> \(\hept{\begin{cases}EI=EK\\HI=HK\end{cases}}\)(2 cạnh tương ứng)

=> \(\Delta\)KEI cân tại E, \(\Delta\)HIK cân tại H

\(\Rightarrow\widehat{KIE}=\frac{1}{2}\widehat{IEK}\Rightarrow\widehat{KIE}+\widehat{FAH}=90^o\)

Mà \(\widehat{MHF}=\widehat{FAH}=90^o\)

Do đó: \(\widehat{KIE}=\widehat{MHF}\)=> Tứ giác FIMH nội tiếp => \(\widehat{MHF}=\widehat{HIF}=90^o\)

Tứ giác HMNK có: \(\widehat{HMN}=\widehat{HKN}=90^o\)=> Tứ giác HMNK nội tiếp

Ta có: \(\hept{\begin{cases}\widehat{HFN}=\widehat{HIK}\\\widehat{HNM}=\widehat{HIK}\\\widehat{HIK}=\widehat{HKI}\end{cases}}\)

=> \(\Delta\)HFN đồng dạng \(\Delta\)HIK (g.g)

=> \(\frac{HF}{HI}=\frac{HN}{HK},HI=HK\Rightarrow HF=HN\)

\(\Delta\)HFN cân tại H, HM _|_ FN => HM là đường trung tuyến của tam giác HFN

FM _|_ AD, BD _|_ AD => FM//BD

MF=MN, DB=DC nên \(\frac{AM}{AD}=\frac{MN}{DS}\)

Xét \(\Delta\)AMN và \(\Delta\)ADS có:

\(\widehat{AMN}=\widehat{ADS}\left(MN//BS\right),\frac{AM}{AD}=\frac{MN}{DS}\)

=> \(\Delta\)AMN đồng dạng \(\Delta\)ADS (c.g.c)

=> \(\widehat{MAN}=\widehat{DAS}\)

=> 2 tia AN, AS trùng nhau => A,N,S thẳng hàng

loading...  loading...  

27 tháng 3 2023

siêu phẩm của chữ :)) dù vẫn đọc đc nhưng .... 

a: góc BDH+góc BFH=180 độ

=>BDHF nội tiếp

góc BFC=góc BEC=90 dộ

=>BFEC nội tiếp

b: góc FEB=góc BAD

góc DEB=góc FCB

mà góc BAD=góc FCB

nên góc FEB=góc DEB

=>EB là phân giác của góc FED

c: Kẻ tiếp tuyến Ax của (O)

=>góc xAC=góc ABC=góc AEF

=>Ax//FE

=>FE vuông góc OA

=>OA vuông góc IK

Sửa đề: M đối xứng H qua BC

Gọi AD là đường kính, I là giao của HD và BC

góc ABD=1/2*sđ cung AD=90 độ

=>BD//CH

góc ACD=1/2*sđ cung AD=90 độ

=>CD//BH

mà BD//CH

nên BHCD là hình bình hành

=>BC căt HD tại trung điểm của mỗi đường

=>I là trung điểm chung của HD và BC và BH//CD

góc AMD=1/2*sđ cung AD=90 độ

=>MD vuông góc AM

=>MD//BC

=>BCDM là hình thang cân

=>góc MBC=góc DCB=góc HBC

=>BC là phân giác của góc HBM

mà BC là trung tuyến của ΔHBM

nên ΔHMB cân tại B

=>BC là trug trực của MH

=>M đối xứng H qua BC