K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 4 2019

VTPT: vecto pháp tuyến

a) ✽ pt AB:

ta có \(\overrightarrow{AB}\)= (-1;-5) nên VTPT của AB là: (5;-1). Mà A(2;3) ϵ AB

nên pt AB: 5(x-2) -1.(y-3)=0 ⇔ 5x - y -7=0

✽ pt BC:

Ta có \(\overrightarrow{BC}\)= (3;6) nên VTPT của BC là : (6;-3). Mà B(1;-2) ϵ BC

nên pt BC: 6(x-1) -3(y+2)=0 ⇔ 2x -y -4=0

✽ pt AC:

ta có \(\overrightarrow{AC}=\left(2;1\right)\)nên VTPT của AC là (-1;2). Mà A(2;3) ϵ AC

nên pt AC: - (x-2) +2(y-3)=0 ⇔ -x +2y -4=0

b)pt AH:

AH có VTPT là \(\overrightarrow{BC}\)= (3;6) và qua A(2;3) nên ptAH: 3(x-2)+6(y-3)=0

⇔ x +2y -4=0

Tọa độ H là nghiệm của hệ pt \(\left\{{}\begin{matrix}\text{2x -y -4=0}\\x+2y-4=0\end{matrix}\right.\)\(\left\{{}\begin{matrix}x=\frac{12}{5}\\y=\frac{4}{5}\end{matrix}\right.\)

H(\(\frac{12}{5}\);\(\frac{4}{5}\)) ⇒ AH = \(\sqrt{\left(\frac{12}{5}-2\right)^2+\left(\frac{4}{5}-3\right)^2}\)=\(\sqrt{5}\)

BC = \(\sqrt{3^2+6^2}\)=\(3\sqrt{5}\)

SABC= 0,5.\(\sqrt{5}\).\(3\sqrt{5}\)=7,5 (đvdt)

c) Tọa độ giao điểm là nghiệm của hệ pt: \(\left\{{}\begin{matrix}\text{-x +2y -4=0}\\x+y+1=0\end{matrix}\right.\)

\(\left\{{}\begin{matrix}x=-2\\y=1\end{matrix}\right.\)

d) cách 1: ta có d' // AB nên d': 5x - y + c=0 (c≠-7)

mà B(1;-2) ϵ d' nên 5 + 2 +c =0 ⇔ c = -7 (loại)

Vậy không có pt đường thẳng nào đi qua B và // với AB

cách 2 (dùng tiên đề Ơ-clit)

ta có B ϵ d', B ϵ AB mà d' // AB nên d' \(\equiv\) AB

( qua 1 điểm nằm ngoài một đường thẳng, có 1 và chỉ 1 đường thẳng song song với đường thẳng đã cho)

điều này mâu thuẫn với đề bài (d'//AB) do đó không có pt d'

Bài 1. Viết phương trình tổng quát, phương trình tham số của đường thẳng trong mỗi trường hợp sau:a) Đi qua A(1;-2) và // với đường thẳng 2x - 3y - 3 = 0.b) Đi qua hai điểm M(1;-1) và N(3;2).c) Đi qua điểm P(2;1) và vuông góc với đường thẳng x - y + 5 = 0.Bài 2. Cho tam giác ABC biết A(-4;1), B(2;4), C(2;-2).Tính khoảng cách từ điểm C đến đường thẳng AB.Bài 3. Cho tam giaùc ABC coù: A(3;-5), B(1;-3), C(2;-2).Vieát...
Đọc tiếp

Bài 1. Viết phương trình tổng quát, phương trình tham số của đường thẳng trong mỗi trường hợp sau:

a) Đi qua A(1;-2) và // với đường thẳng 2x - 3y - 3 = 0.

b) Đi qua hai điểm M(1;-1) và N(3;2).

c) Đi qua điểm P(2;1) và vuông góc với đường thẳng x - y + 5 = 0.
Bài 2. Cho tam giác ABC biết A(-4;1), B(2;4), C(2;-2).

Tính khoảng cách từ điểm C đến đường thẳng AB.

Bài 3. Cho tam giaùc ABC coù: A(3;-5), B(1;-3), C(2;-2).Vieát phöông trình toång quaùt cuûa:

a)   3 caïnh AB, AC, BC

b) Ñöôøng thaúng qua A vaø song song vôùi BC

c)Trung tuyeán AM vaø ñöôøng cao AH cuûa tam giaùc ABC

d) Ñöôøng thaúng qua troïng taâm G cuûa tam giaùc ABC vaø vuoâng goùc vôùi AC

e) Ñöôøng trung tröïc cuûa caïnh BC

Bài 4. Cho tam giaùc ABC coù: A(1 ; 3), B(5 ; 6), C(7 ; 0).:

a)  Vieát phöông trình toång quaùt cuûa 3 caïnh AB, AC, BC

b)  Viết phương trình đđöôøng trung bình song song cạnh AB

c) Viết phương trình đường thẳng qua A và cắt hai trục tọa độ tại M,N sao cho AM = AN

d) Tìm tọa độ điểm A’ là chân đường cao kẻ từ A trong  tam giaùc ABC   

Bài 5. Viết phương trình đường tròn có tâm I(1; -2) và

a) đi qua điểm A(3;5).

b) tiếp xúc với đường thẳng có pt x + y = 1.

 

0
NV
21 tháng 4 2020

c/

\(\overrightarrow{BC}=\left(3;1\right)\Rightarrow BC=\sqrt{3^2+1^2}=\sqrt{10}\)

H là giao điểm AH và BC nên tọa độ H là nghiệm:

\(\left\{{}\begin{matrix}x-3y-6=0\\3x+y-8=0\end{matrix}\right.\) \(\Rightarrow H\left(3;-1\right)\)

\(\Rightarrow\overrightarrow{AH}=\left(\frac{3}{4};\frac{9}{4}\right)\Rightarrow AH=\sqrt{\left(\frac{3}{4}\right)^2+\left(\frac{9}{4}\right)^2}=\frac{3\sqrt{10}}{4}\)

\(S_{ABC}=\frac{1}{2}AH.BC=\frac{15}{4}\)

Ủa làm tới đây mới để ý H trùng B :D

Từ đề bài, AB có 1 vtpt là \(\left(3;1\right)\) ; BC có 1 vtpt là \(\left(1;-3\right)\)

\(3.1+1.\left(-3\right)=0\Rightarrow AB\perp BC\Rightarrow\Delta ABC\) vuông tại B

\(\Rightarrow\widehat{B}=90^0\)

(Đồng thời AH trùng AB là đúng rồi)

NV
21 tháng 4 2020

Đường thẳng AC có 1 vtcp là \(\left(3;-1\right)\) và đi qua điểm \(\left(3;1\right)\) nên có pt tổng quát:

\(1\left(x-3\right)+3\left(y-1\right)=0\Leftrightarrow x+3y-6=0\)

Điểm A là giao của AB và AC nên tọa độ thỏa mãn:

\(t+3\left(8-3t\right)-6=0\Rightarrow t=\frac{9}{4}\Rightarrow A\left(\frac{9}{4};\frac{5}{4}\right)\)

B là giao AB và BC nên tọa độ thỏa mãn:

\(t-3\left(8-3t\right)-6=0\) \(\Rightarrow t=3\Rightarrow B\left(3;-1\right)\)

C là giao AC và BC nên tọa độ thỏa mãn:

\(\left\{{}\begin{matrix}x-3y-6=0\\x+3y-6=0\end{matrix}\right.\) \(\Rightarrow C\left(6;0\right)\)

Đường thẳng AH vuông góc BC nên nhận \(\left(3;1\right)\) là 1 vtpt

Phương trình AH:

\(3\left(x-\frac{9}{4}\right)+1\left(y-\frac{5}{4}\right)=0\Leftrightarrow3x+y-8=0\)

Phần 1: Đại sốCâu 1 (2đ): Xét dấu các biểu thức sau:a.f x x     3 4; c.    2f x x x x     1 2 5 2 .b. 2f x x x    9 6 1; d.  22 52xf xx x.Câu 2 (4đ): Giải các bất phương trình sau:a.  23 4 4 0 x x   ; c.  21 2 503x xx .b. 22 4 4 0 x x x   ; d. 225 2 302x xx x.Câu 3 (1đ): Xác định miền nghiệm của bất phương...
Đọc tiếp

Phần 1: Đại số
Câu 1 (2đ): Xét dấu các biểu thức sau:
a.
f x x     3 4

; c.

    

2

f x x x x     1 2 5 2 .

b.
 
2
f x x x    9 6 1

; d.

  2
2 5
2
x

f x
x x



.

Câu 2 (4đ): Giải các bất phương trình sau:
a.
  
2
3 4 4 0 x x   

; c.

  
2
1 2 5
0

3
x x
x
 

.

b.
 
2
2 4 4 0 x x x   

; d.

 
2
2
5 2 3
0
2
x x
x x


.

Câu 3 (1đ): Xác định miền nghiệm của bất phương trình sau:

2 3 1 0. x y   

Phần 2: Hình học
Câu 1 (2đ): Cho tam giác ABC biết

A B và C 1; 4 , 3; 1 6; 2 .       
a) Lập phương trình tham số đường thẳng chứa cạnh BC của tam giác.
b) Lập phương trình tổng quát đường cao hạ từ A của tam giác ABC.
c) Lập phương trình tổng quát đường thẳng đi qua B và song song với đường thẳng
d x y : 3 1 0.   
Câu 2 (1đ): Xét vị trí tương đối và tìm giao điểm (nếu có) của 2 đường thẳng sau:
1
d : 2 3 0     x y

2
d : 2 3 0.

0
24 tháng 4 2020

Gọi D là giao điểm của hai đường phân giác trong góc B và góc C

+) Trên BC lấy điểm M sao cho: AM vuông BD tại H 

=> Đường thẳng AM \(\perp\)BH => AM có dạng: 2x + y + a = 0 

mà A ( 2; -1) \(\in\)AM => 2.2 + ( -1) + a = 0 <=> a = -3

=> phương trình đt: AM : 2x + y - 3 = 0 

H là giao của AM và BD => Tọa độ điểm H là nghiệm hệ: \(\hept{\begin{cases}x-2y+1=0\\2x+y-3=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=1\\y=1\end{cases}}\)=> H ( 1; 1) 

Lại có: BH vừa là đường cao vừa là đường phân giác \(\Delta\)ABM => \(\Delta\)ABM cân =>  H là trung điểm AM 

=> \(\hept{\begin{cases}x_M=2x_H-x_A=2.1-2=0\\y_M=2y_H-y_B=2.1-\left(-1\right)=3\end{cases}}\)=> M ( 0; 3 ) 

+) Trên BC lấy lấy điêm N sao cho AN vuông CD tại K 

Làm tương tự như trên ta có: 

AN có dạng: x - y + b = 0 mà A thuộc AN => 2 + 1 + b = 0 => b = - 3 

K là giao điểm của AN và CD => K ( 0; -3 ) 

K là trung điểm AN => N ( -2; -5 )

=> Đường thẳng BC qua điểm M  và N 

\(\overrightarrow{MN}\left(-2;-8\right)\)=> VTPT của BC là: \(\overrightarrow{n}\left(8;-2\right)\)

=> Phương trình BC : \(8\left(x-0\right)+\left(-2\right)\left(y-3\right)=0\)

<=> 4x -y + 3 = 0 

Vậy: BC : 4x - y + 3 = 0

24 tháng 4 2020

A B C H K D M N