Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, Vì tam giác ABC là tam giác cân nên góc BAC=góc BCA (1)
Mà AM là tia phân giác của góc BAC=> góc BAM=Góc MAC (2)
CN là tia phân giác của góc BCA nên góc BCN= góc NCA (3)
Từ (1) (2)(3) suy ra góc BAM=góc BNC
Xét 2 tam giác ABM và tam giác CBN, ta có:
Góc B chung
BAM=BCN (cmt)
=>tam giác ABM đồng dạng với tam giác CBN(g.g)
b, Vì tam giác ABM đồng dạng với tam giác CBN (theo câu a) nên ta có tỉ lệ sau:
BM/BN=BC/BA=>NM//AC( định lý Ta-lét) (đcpcm)
a) Xét \(\Delta ABM\)và \(\Delta CBN\)có :
\(\widehat{B}\)là góc chung
\(\frac{AB}{BC}=\frac{NB}{MB}\)( Do tam giác ABC cân tại B , \(AB=BC\) và \(\widehat{A}=\widehat{C}\))
\(\Rightarrow\Delta ABM\)\(\infty\)\(\Delta CBN\)\(\left(c.g.c\right)\)
b) do \(\Delta ABM\infty\Delta BCN\left(c.g.c\right)\)(chứng minh câu a)
ta có tỉ lệ : \(\frac{BM}{BC}=\frac{BN}{AB}\)=MN/AC(dpcm)
c) bạn tự làm nka câu này dễ
a, Xét hai tam giác ABM và CBM có:
\(\widehat{B}\) là góc chung
\(\dfrac{AB}{BC}=\dfrac{NB}{MB}\) ( Do tam giác ABC cân tại B)
=> tam giác ABM đồng dạng tam giác CBM (c.g.c)
b, Do tam giác ABM∼ tam giác CBN nên ta có tỉ lệ:
\(\dfrac{BM}{BC}=\dfrac{BN}{AB}\) => MN // AC (đpcm)
a)Xét tam giác ABM và tam giác BCN có:
+AB=CB(Theo D/lí tam giác cân)
+Góc B chung
+AM=CN(Vì là hai cạnh tương ứng của hai tam giác bằng nhau)
=> Tam giác ABM=BCN(theo t.hợp C.G.C)\
Vậy tam giác ABM=tam giác BCN
A B C 5 5 6 M N
a, Vì CN là phân giác ^C nên : \(\frac{AC}{BC}=\frac{AN}{NB}\)( t/c ) \(\Rightarrow\frac{AC}{AN}=\frac{BC}{NB}\)( tỉ lệ thức )
Vì BM là phân giác ^B nên : \(\frac{AB}{BC}=\frac{AM}{MC}\)( t/c ) \(\Rightarrow\frac{AB}{AM}=\frac{BC}{MC}\)( tỉ lệ thức )
mà \(AB=AC\)( do tam giác ABC cân ) suy ra : \(\frac{AB}{AM}=\frac{AC}{AN}\)
Vậy MN // BC ( theo talét đảo )
bổ sung hộ mình phần a là NB = MC ( do là phân giác mà tam giác ABC cân )
b, Xét tam giác ANC và tam giác AMB ta có :
^A _ chung
\(\frac{AC}{AN}=\frac{AB}{AM}\)( cma )
Vậy tam giác ANC ~ tam giác AMB ( c.g.c )