Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, Xét tam giác AHB và tam giác AHC có
AH _ chung
AB = AC
Vậy tam giác AHB~ tam giác AHC (ch-cgv)
Ta có tam giác ABC cân tại A, có AH là đường cao
đồng thười là đường pg
b, Xét tam giác AMH và tam giác NAH có
HA _ chung
^MAH = ^NAH
Vậy tam giác AMH = tam giác NAH (ch-gn)
=> AM = AN ( 2 cạnh tương ứng )
c, Ta có AM/AB = AN/AC => MN // BC
d, Ta có \(AH^2+BM^2=AN^2+BH^2\)
Xét tam giác BMH vuông tại M \(MB^2=BH^2-MH^2\)
Thay vào ta được \(AH^2+BH^2-MH^2=AN^2+BH^2\Leftrightarrow AH^2-MH^2=AN^2\)
Lại có AM = AN (cmt)
\(AM^2=AH^2-MH^2\)( luôn đúng trong tam giác AMH vuông tại M)
Vậy ta có đpcm
a,xét tam giac AHB va AHC.Ta có
góc AHB=góc AHC (vi = 90 độ)
cạnh AB=AC(vì ABC cân tại A)
góc B=góc C (vì ABC cân tại A)
-> tam giác AHB=AHC (cạnh huyền-góc nhọn)
-> goc MAH=gocNAH
b, xét tam giac AMH va ANH. có
goc ANH=góc AMH (90 độ)
cạnh AH chung
goc MAH=goc NAH(cm trên)
->tam giac AMH=ANH (cạnh huyền góc nhọn)
->AM=AN
->AMN là tam giác cân tại A
TU VE HINH NHA
CÓ TAM GIÁC ABC VUÔNG TẠI A :
=>AB=AC( DN TAM GIÁC CÂN)
a) XÉT TAM GIÁC ABH VUÔNG TẠI H VÀ TAM GIÁC ACH VUÔNG TẠI H CÓ:
AB=AC( CMT)
AH CHUNG
=> TAM GIÁC AHB = TAM GIAC AHC( CH- CGV)
b)TAM GIÁC AHB= TAM GIÁC AHC (CM Ở CÂU a)
=>GÓC BAH = GÓC CAH(2 GÓC TƯƠNG ỨNG)
XÉT TAM GIÁC AMH VUÔNG TẠI M VÀ TÂM GIC ANH VUÔNG TẠI N CÓ:
GÓC BAH= GÓC CAH(CMT)
AH CHUNG
=> TAM GIÁC AMH = TAM GIÁC ANH( CH- GN)
=>AM=AN( 2 CÁNH TUONG ỨNG)
=>TAM GIAC AMN CÂN TẠI A( DN TAM GIAC CAN )
K CHO M NHA
@trần thị giang : thì mình KHÔNG hỏi bạn, nếu ai biết thì trả lời, CÂM ĐƯỢC RỒI
- Ta có : \(\Delta ABC\) cân tại A .
=> AB = AC ( Tính chất tam giác cân )
=> \(\widehat{ABH}=\widehat{ACH}\) ( Tính chất tam giác cân )
- Xét \(\Delta AHB\) và \(\Delta AHC\) có :
\(\left\{{}\begin{matrix}AB=AC\left(cmt\right)\\\widehat{ABH}=\widehat{ACH}\left(cmt\right)\\AH=AH\end{matrix}\right.\)
=> \(\Delta AHB\) = \(\Delta AHC\) ( c - g -c )
b, Ta có : \(\Delta AHB\) = \(\Delta AHC\) ( câu a )
=> BH = CH ( cạnh tương ứng )
- Xét \(\Delta HMB\) và \(\Delta HNC\) có :
\(\left\{{}\begin{matrix}\widehat{HMB}=\widehat{HNC}\left(=90^o\right)\\BH=CH\left(cmt\right)\\\widehat{ABC}=\widehat{ACB}\left(cmt\right)\end{matrix}\right.\)
=> \(\Delta HMB\) = \(\Delta HNC\) ( Ch - Cgv )
=> MB = NC ( cạnh tương ứng )
Ta có : \(\left\{{}\begin{matrix}AB=AM+BM\\AC=AN+CN\end{matrix}\right.\)
Mà AB = AC (tam giác cân )
=> \(AM=AN\)
- Xét \(\Delta AMN\) có : AM = AN ( cmt )
=> \(\Delta AMN\) là tam giác cân tại A ( đpcm )
c, - Ta có : \(\Delta AMN\) cân tại A ( cmt )
=> \(\widehat{AMN}=\widehat{ANM}\)
Mà \(\widehat{AMN}+\widehat{ANM}+\widehat{MAN}=180^o\)
=> \(\widehat{2AMN}+\widehat{MAN}=180^o\)
=> \(\widehat{AMN}=\frac{180^o-\widehat{MAN}}{2}\) ( I )
- Ta có : \(\Delta ABC\) cân tại A .
=> \(\widehat{ABC}=\widehat{ACB}\)
Mà \(\widehat{ABC}+\widehat{ACB}+\widehat{BAC}=180^o\)
=> \(\widehat{2ABC}+\widehat{BAC}=180^o\)
=> \(\widehat{ABC}=\frac{180^o-\widehat{BAC}}{2}\) ( II )
Ta có : \(\widehat{ABC}=\widehat{AMN}\left(=\frac{180^o-\widehat{BAC}}{2}\right)\)
Mà 2 góc trên ở vị trí đồng vị .
=> MN // BC ( Tính chất 2 đoạn thẳng song song )
d, ( Hình vẽ câu trên nha )
- Áp dụng định lý pi - ta - go vào \(\Delta AHB\perp H\) có :
\(AH^2+BH^2=AB^2\)
https://hoidap247.com/cau-hoi/241131
Bn vô đó tham khảo nha!
Ừm,mình biết rồi.Cảm ơn bạn nhé!