Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
tam giác AHB đồng dạng với tam giác HCI ( g.g ) ( Bạn tự chứng minh )
\(\Rightarrow\frac{AH}{HI}=\frac{BH}{CI}\Rightarrow\frac{AH}{OH}=\frac{BC}{CI}\)
Suy ra tam giác BIC đồng dạng với tam giác AOH ( đpcm )
b) Qua H kẻ HE // BI
Ta cũng dễ chứng minh được OE // BC suy ra \(OE\perp AH\)
Suy ra tam giác AHE có trực tâm là O
Suy ra AO vuông góc với BI ( đpcm )
Làm ngắn thế Hiếu!
Bạn tự vẽ hình!!!
a) Hai tam giác vuông AHC và HIC có chung góc C nên chúng đồng dạng
\(\Delta AHC\approx\Delta HIC\Rightarrow\frac{HA}{HI}=\frac{HC}{IC}\)
\(\frac{HA}{2HO}=\frac{BC}{2IC}\Rightarrow\frac{HA}{HO}=\frac{BC}{IC}\left(1\right)\)
Mặt khác: \(\widehat{AHO}=\widehat{ICB}\left(2\right)\)
Từ (1) và (2) \(\Rightarrow\Delta BIC\approx\Delta AOH\left(c-g-c\right)\)
b) Gọi D là giao điểm của AH và BI , E là giao điểm của AO và BI
\(\Delta BIC\approx\Delta AOH\left(cmt\right)\Rightarrow\widehat{IBH}=\widehat{HAO}\)
Ta lại có: góc BDH = góc ADE (dđ) => IBH + BDH = HAO + ADE
Tam giác BHD vuông nên IBH + BDH=90 độ => HAO + ADE =90 độ => góc AED = 90 độ hay \(AO\perp BI\)
a, tam giác AIH và tam giác HIC đều vuông tại I
tam giác ABC cân tại A ; H là trung điểm của BC (gt)
=> AH _|_ BC (đl) và AH là phân giác của góc BAC
=> góc BAH + góc ABC = 90 mà góc ABH = góc HAC
=> góc HAC + góc ABC = 90
tam giác ABC cân tại A => góc B = Góc C
có góc IHC + góc ACB = 90
=> gócIHC + góc ABC = 90
=> góc HAC = góc IHC
tam giác AIH và tam giác HIC đều vuông tại I
=>t am giác AIH ~ tam giác HIC
=> HA/HC = HI/IC
=> HA.IC = HC.HI
a/ Xét hai tg vuông AIH và AHC có ^HAC chung => AIH đồng dạng AHC
b/ Ta có
2.S(ABC)=AH.BC
2.S(AHC)=AH.CH
mà CH=BC/2
=> S(ABC)=2.S(AHC) => \(\frac{AH.BC}{2}=IH.AC\) mà AC=AB nên
\(\frac{AH.BC}{2}=IH.AB\Rightarrow AH.BC=2.IH.AB\)
c/ Ta có
\(AH^2=AI.AC=16.\left(16+9\right)=16.25=4^2.5^2=\left(4.5\right)^2=400\Rightarrow AH=20\)
\(HC^2=CI.AC=9.\left(9+16\right)=3^2.5^2=\left(3.5\right)^2=15^2\Rightarrow HC=15\Rightarrow BC=2.HC=30\)
\(S_{ABC}=\frac{AH.BC}{2}=\frac{20.30}{2}=300\)
d/
a) Xét ΔAHC và ΔHIC có:
ˆAHC=ˆHIC=90
ˆACH:chung
⇒ ΔAHC ∼ ΔHIC
⇒ AH/HI=HC/IC
⇔AH.IC=HC.HI
b)Có AH/HI=HC/IC ( cmt)
mà IH = 2HO ( O là trung điểm của HI);
BC= 2HC ( H là trung điểm của BC )
=> AH/2HO=BC/2IC
=> AH/HO=BC/IC(1)
Mặt khác ˆAHO=ˆICB( cùng phụ góc IHC ) (2)
Từ (1) và (2) => Δ BIC ∼ Δ AOH ( c.g.c)
c) Gọi D là giao điểm của AH và BI ; E là giao điểm của AO và BI
Vì ΔBIC ∼ Δ AOH (cmb) => ˆIBH=ˆHAO
Lại có ˆBDH=ˆADE ( đối đỉnh )
=>ˆIBH+ˆBDH=ˆHAO+ˆADE
mà ˆIBH+ˆBDH=90
⇒AO⊥BI(đpcm)
Đề lỗi hiển thị. Bạn nên viết lại đề bằng công thức toán (biểu tượng $\sum$ góc trái khung soạn thảo) để mọi người đọc hiểu đề của bạn hơn nhé.