K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 3 2021

Nãy làm rồi đang định gửi thì bận:vvv

a) Vì ∆ABC cân tại A => AB=AC

<=> \(\dfrac{1}{2}AB=\dfrac{1}{2}AC\Leftrightarrow BF=CE\)

Xét ∆BFC và ∆CEB:

BF=CE(cmt)

BC: cạnh chung

\(\widehat{FBC}=\widehat{ECB}\) (∆ABC cân tại A)

=> ∆BFC=∆CEB(c.g.c)

b) Vì theo câu a: ∆BFC=∆CEB

=> \(\widehat{FCB}=\widehat{EBC}\) (2 góc t/ứ)

=> ∆BCG cân tại G

a: Ta có: \(AM=MB=\dfrac{AB}{2}\)

\(AN=NC=\dfrac{AC}{2}\)

mà AB=AC

nên AM=MB=AN=NC

Xét ΔABN và ΔACM có

AB=AC
\(\widehat{BAN}\) chung

AN=AM

Do đó: ΔABN=ΔACM

=>BN=CM

b: Xét ΔMBC và ΔNCB có

MB=NC

MC=NB

BC chung

Do đó: ΔMBC=ΔNCB

=>\(\widehat{MCB}=\widehat{NBC}\)

=>\(\widehat{GBC}=\widehat{GCB}\)

=>ΔGBC cân tại G

c: Xét ΔABC có

BN,CM là các đường cao

BN cắt CM tại G

Do đó: G là trọng tâm của ΔABC

Xét ΔABC có

G là trọng tâm

AG cắt BC tại D

DO đó: \(AG=\dfrac{2}{3}AD=\dfrac{2}{3}\cdot3=2\left(cm\right)\)

Xét ΔABM và ΔACN có

AB=AC
góc BAM chung

AM=AN

=>ΔABM=ΔACN

=>BM=CN

Mình xin phép sửa đề:

Cho tam giác ABC cân tại A , các đường trung tuyến BM và CN cắt nhau tại G

Chứng minh tam giác ABN = tam giác ACN , từ đó suy ra BM=CN

`------`

\(\text{GT | AB = AC, }\widehat{\text{B}}=\widehat{\text{C}}\)

\(\text{CM | BM = CN}\)

\(\text{BM là đường trung tuyến}\)

`->`\(\text{MA = MC (1)}\)

\(\text{CN là đường trung tuyến}\)

`->`\(\text{NA = NB (2)}\)

`\Delta ABC` cân tại A

`->`\(\widehat{\text{B}}=\widehat{\text{C}}\text{, AB = AC (3)}\)

Từ \(\left(1\right),\left(2\right),\left(3\right)\)

`->`\(\text{NA = NB = MA = MC}\)

Xét `\Delta ABM` và `\Delta ACN`:

\(\left\{{}\begin{matrix}\text{BM = CN}\\\widehat{\text{B}}=\widehat{\text{C}}\\\text{BC chung}\end{matrix}\right.\)

`=> \Delta ABM = \Delta ACN (c-g-c)`

`->`\(\text{BM = CN (2 cạnh tương ứng).}\)

loading...

28 tháng 4 2019

a) BE = DC, ΔBEC = ΔCDB.

Vì ΔABC cân tại A nên: AB = AC.

Ta lại có: AB = AE + EB mà AE = EB (gt)

AC = AD + DC mà AD = DC (gt) 

⇒ AE = EB = AD = DC

Vậy BE = DC.

Xét ΔBEC và ΔCDB có:

BE = CD (cmt)

∠ABC = ∠ACB (ΔABC cân)

BC : cạnh chung.

Do đó: ΔBEC = ΔCDB (c.g.c)

b) ΔBGC cân.

Vì ΔBEC = ΔCDB (câu a) 

⇒ ∠ECB = ∠DBC (hai góc tương ứng)

⇒ ΔBGC cân tại G.

Câu c và hình chờ xíu :v  

28 tháng 4 2019

c) BC <4GD

Kẻ trung tuyến AG ⇒ G là trọng tâm của ΔABC, mà ΔABC cân (gt) ⇒ AG là phân giác của ∠BAC (∠A1 = ∠A2

AG cắt BC tại H (HB = HC)

Xét ΔABH và ΔACH có:

AB = AC (gt)

BH = HC (cmt)

AH : chung

Do đó: ΔABH = ΔACH (c.c.c)

⇒ ∠H1 = ∠H2 (hai góc tương ứng) Mà ∠H1 + ∠H2 = 180o

⇒ ∠H1 = ∠H2 = 180o : 2 = 90o hay AH ⊥ BC.

Vì ΔBGC cân tại G nên: GB = GC (hai cạnh đáy) Mà GB = 2GD 

⇒ 4GD = DB + GC.

Xét ΔBGH vuông tại H, ta có: BG > BH (định lí) (1)

Xét ΔCGH vuông tại H, ta có: CG > CH (định lí) (2)

Từ (1) và (2) suy ra: BG + CG > BH + CH

Mà GB + CG = 4GD (cmt) và CB = BH + CH

⇒ 4GD > BC 

21 tháng 4 2017

a. trong tam giác cân 2 đường trung tuyến ở góc đáy bằng nhau nên CF=BE (1)

vì G là trọng tâm tam giác ABC nên GC=2/3 FC ;BG= 2/3 BE (2)

tu 1 va 2 suy ra CG=BG

suy ra tam giác BGC cân tại G

c. Xet tam giac AMB va tam giac AMC co

                       AB=AC

                      ABC=ACB

                      AM chung

    suy ra tam giac AMB= tam giac AMC 

suy ra MB=MC

Suy ra AM la trung tuyen

suy ra G thuộc đường thẳng AM

Suy ra A,G,M thẳng hàng

b. tren tia doi FE lay diem K sao cho EK=EF

xet tg AEF = tg CEK ( c.g.c )

suy ra BA song song KC, AF=FB=KC

nối B với K

xet tam giac FBK = tg CKB ( c.g.c )

suy ra FE song song BC

bán xoi tam  3 câu trước đi nhé để mik suy nghĩ câu d

21 tháng 4 2017

câu d mik chứng minh phản chứng nếu bạn thấy sai chỗ nào bảo mik nhé

Vì G là trọng tâm nên GE=1/3BE suy ra 3GE=BE

TH1: nếu AE>3GE suy ra AE>BE

suy ra EC>BE 

suy ra gEBC>gECB ( vô lý vì gECB=gEBC )

TH2: AE=3GE suy ra AE=BE

suy ra EC=BE

suy ra tg EBC can tai E

suy ra gEBC=gECB ( vo ly vi gECB=gFBC )

vay AE<3GE 

Hì mik cùng bằng lớp bạn nên thấy mik làm sai thì chỉ bảo mik nha

12 tháng 5 2018

â)xét tam giác abd và acd có 

ab=ac(abc là tam giác cân )

ad chung

góc a1=a2(ad là tia phân giác góc a)

=>tam giác abd=acd(trường hợp cạnh-góc -cạnh)

b)vì tam giác abc=acd(câu a)=>bd=cd=>ad là trung tuyến cạnh bc

mà cf là đuong trung tuyển cạnh ba=>ad và cf cùng đi qua một điểm

=> g là trọng tâm

câu c mình vẫn chưa nghĩ ra được .xin lỗi nha

12 tháng 5 2018

c) H là trung điểm của CD \(\Rightarrow\)DH=HC

mà EH vuông góc vs DC \(\Rightarrow\) EH là đường cao

\(\Rightarrow\)EH là đường trung trực của CD \(\Rightarrow\)ED=EC \(\Rightarrow\)tam giác DEC cân  tại E

d) tam giác GBC cân tại G ( CM tương tự như trên )

\(\Rightarrow\)  góc GBC =GCB

mà \(\widehat{B}=\widehat{C}\)(tam giác ABC cân tại A) 

\(\widehat{GBD}+\widehat{ABE}=\widehat{B}\) ;  \(\widehat{GCB}+\widehat{ACF}=\widehat{C}\)

\(\Rightarrow\) GÓC ABE = ACF

TAM GIÁC ABE = TAM GIÁC ACF  (G.C.G)

\(\Rightarrow\) AE=AF

MÀ AF=1/2AB ( CF là đường trung tuyến ) ; AB=AC (tam giác ABC cân tại A )

\(\Rightarrow\) AE = 1/2 AC \(\Rightarrow\) E LÀ TRUNG ĐIỂM CỦA AC

\(\Rightarrow\) BE LÀ ĐƯỜNG TRUNG TUYẾN

mà G là trọng tâm của tam giác ABC

\(\Rightarrow\)BE đi qua G \(\Rightarrow\)3 điểm B,E,G thẳng hàng