Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
a) C/m:tam giác BEM=CFM
Vì tam giác ABC cân tại A có :
=) đường trung tuyến AM
=) AM cũng là đường p/giác của tam giác ABC
=) ME = MF
Xét tam giác BEM ( E = 90 độ ) và CFM ( F = 90 độ ) có :
ME = MF ( Cmt )
BM = MC ( gt )
=) tam giác BEM=CFM ( ch - cgv )
b) C/m: Am là trung trực của EF
Ta có:
AB = AC ( vì tam giác ABC cân tại A )
mà EB = FC ( vì tam giác BEM=CFM )
=) AE = AF
Ta có :
AE = AF ( Cmt )
=) A thuộc đường trung trực cùa tam giác ABC (1)
EB = FC ( Cmt )
=) E thuộc đường trung trực cùa tam giác ABC (2)
Tứ (1) và (2)
=) AE là đường trung trực của EF
c) C/m: A,M,D thẳng hàng
Xét tam giác ABC cân tại A có :
Đường cao CC cắt đường cao BB tại D
=) D là trực tâm của tam giác ABC
mà AM đi qua trực tâm D
=) AM cũng là đường cao của tam giác ABC
=) A,M,D thẳng hàng
=) ĐPCM
Cho tam giác ABC cân tại A,vẽ trung tuyến AM.Từ M kẻ ME vuông góc vs AB tại E, kẻ MF vuông góc vs AC tại F
a,C/m:tam giác BEM=CFM
b, C/m: Am là trung trực của EF
c,từ B kẻ đường thẳng vuông góc vs AB tại B,từ C kẻ đường thẳng vuông góc vs AC tại C,hai đường này cắt nhau tại D.C/m: A,M,D thẳng hàng
Ai giúp tớ vs!Trình bày cả bài thì càng tốt,nếu ko làm câu c thôi cx dc!
Toán lớp 7
![](https://rs.olm.vn/images/avt/0.png?1311)
Bạn có thể tham khảo ở đây nhé :
https://h.vn/hoi-dap/tim-kiem?q=Cho%2Btam%2Bgi%C3%A1c%2BABC%2Bc%C3%A2n%2Bt%E1%BA%A1i%2BA.%2BV%E1%BA%BD%2Btrung%2Btuy%E1%BA%BFn%2BAM%2Bt%E1%BB%AB%2BM%2Bk%E1%BA%BB%2BME%2Bvu%C3%B4ng%2Bg%C3%B3c%2Bv%E1%BB%9Bi%2BAB%2Bt%E1%BA%A1i%2BE.%2BK%E1%BA%BB%2BMF%2Bvu%C3%B4ng%2Bg%C3%B3c%2Bv%E1%BB%9Bi%2BAC%2Bt%E1%BA%A1i%2BF.%2BCh%E1%BB%A9ng%2Bminh:%2Ba)%2BTam%2Bgi%C3%A1c%2BBEM%2B=%2Btam%2Bgi%C3%A1c%2BCFM%2Bb)%2BAM%2Bl%C3%A0%2Btrung%2Btr%E1%BB%B1c%2Bc%E1%BB%A7a%2BEF%2Bc)%2BT%E1%BB%AB%2BB%2Bk%E1%BA%BB%2B%C4%91%C6%B0%E1%BB%9Dng%2Bth%E1%BA%B3ng%2Bvu%C3%B4ng%2Bg%C3%B3c%2Bv%E1%BB%9Bi%2BAB%2Bt%E1%BA%A1i%2BB,%2Bt%E1%BB%AB%2BC%2Bk%E1%BA%BB%2B%C4%91%C6%B0%E1%BB%9Dng%2Bvu%C3%B4ng%2Bg%C3%B3c%2Bv%E1%BB%9Bi%2BAC%2Bt%E1%BA%A1i%2BC.%2BHai%2B%C4%91%C6%B0%E1%BB%9Dng%2Bn%C3%A0y%2Bc%E1%BA%AFt%2Bnhau%2Bt%E1%BA%A1i%2BD.%2BCh%E1%BB%A9ng%2Bminh%2BA,%2BM,%2BD%2Bth%E1%BA%B3ng%2Bh%C3%A0ng.%2B%2Bd,%2BSo%2Bs%C3%A1nh%2BME%2Bv%C3%A0%2BDC.%2B%2BHelp%2Bme!!!%2BMK%2Bc%E1%BA%A7n%2Bc%C3%A2u%2Bd%2Bthui!!!&id=247762
A B C E F M D
a ) Vì AM là đường trung tuyến của \(\Delta ABC\left(gt\right)\)
\(\Rightarrow M\)là trung điểm của BC
\(\Rightarrow BM=CM\)
+ Vì \(\Delta ABC\)cân tại A (gt)
\(\Rightarrow\widehat{ABC}=\widehat{ACB}\)( tính chất của tam giác cân )
Hay \(\widehat{EBM}=\widehat{FCM}\)
Xét 2 \(\Delta\)vuông BEM và CFM có :
\(\widehat{BEM}=\widehat{CFM}=90^0\left(gt\right)\)
\(BM=CM\left(cmt\right)\)
\(\widehat{EBM}=\widehat{FCM}\left(cmt\right)\)
Suy ra \(\Delta BEM=\Delta CFM\)( cạnh huyền - góc nhọn )
b ) Theo câu a ) ta có : \(\Delta BEM=\Delta CFM\)
\(\Rightarrow BE=CF\)( 2 cạnh tương ứng )
+ Vì \(\Delta ABC\)cân tại A ( gt)
\(\Rightarrow AB=AC\)(tính chất tam giác cân )
Ta có : \(\hept{\begin{cases}AE+BE=AB\\AF+CF=AC\end{cases}}\)
Mà \(\hept{\begin{cases}BE=CF\left(cmt\right)\\AB=AC\left(cmt\right)\end{cases}}\)
\(\Rightarrow AE=AF\)
\(\Rightarrow A\)thuộc đường trung trực của EF (1)
Xét 2 \(\Delta\)vuông AEM và AFM có :
\(\widehat{AEM}=\widehat{AFM}=90^0\left(gt\right)\)
\(AE=AF\left(cmt\right)\)
AM : cạnh chung
Suy ra \(\Delta AEM=\Delta AFM\)( cạnh huyền - cạnh góc vuông )
\(\Rightarrow EM=FM\)( 2 cạnh tương ứng )
\(\Rightarrow M\)thuộc đường trung trực cua EF (2)
Từ (1) và (2) \(\Rightarrow AM\)là đường trung trực của EF
c ) Vì AB = AC (cmt)
\(\Rightarrow A\)thuộc đường trung trực của BC (3)
Xét 2 \(\Delta\)vuông \(ABD\)và \(ACD\)có :
\(\widehat{ABD}=\widehat{ACD}=90^0\left(gt\right)\)
\(AB=AC\left(cmt\right)\)
AD : cạnh chung
Suy ra \(\Delta ABD=\Delta ACD\)( cạnh huyền - cạnh góc vuông )
\(\Rightarrow BD=CD\)( 2 cạnh tương ứng )
\(\Rightarrow D\)thuộc đường trung trực của BC (4)
Từ (3) và (4) \(\Rightarrow AD\)là đường trung trực của BC
Hay AD là đường trưng trực của EF
\(\Rightarrow AD\perp EF\)( định nghĩa đường trung trực )
+ Vì AM là đường trung trực của EF ( cmt)
\(\Rightarrow AM\perp EF\)( định nghĩa đường trung trực )
Mà \(AD\perp EF\left(cmt\right)\)
\(\Rightarrow AM\)trùng với AD
\(\Rightarrow A,M,D\)thẳng hàng ( đpcm )
Chúc bạn học tốt !!!
![](https://rs.olm.vn/images/avt/0.png?1311)
b) ta có tam giác ABC cân
=> \(\widehat{B}=\widehat{C}=180-\widehat{A}\) (1)
mà AM là trung tuyến => AM cx là phân giác và AM cx là đường cao (t/c tam giác cân)
=>\(\widehat{A1}=\widehat{A2}\)
xét tam giác AEM và tam giác AfM
có AM chung
\(\widehat{E}=\widehat{F}\)=90o
\(\widehat{A1}=\widehat{A2}\)
=> tam giác AEM =tam giác AFM (CH-GN)
=> AE =AC (2 cạnh tương ứng)
=> tam giác AEF cân ở \(\widehat{A}\)
=> \(\widehat{E}=\widehat{F}=180-\widehat{A}\) (2)
từ 1 và 2 =>\(\widehat{E}=\widehat{B}\) mà 2 góc ở vt đồng vị
=> EF // BC
mà AM ⊥ BC
=> EF ⊥ AM
=> AM là trung trực của EF (t/c tam giác cân)
![](https://rs.olm.vn/images/avt/0.png?1311)
a./ \(\Delta BEM=\Delta CFM\)vì:
- góc BEM = góc CFM ( = 90o )
- góc EBM = góc FCM (2 góc bằng nhau của tam giác cân ABC tại A)
- => góc EMB = góc FMC ( = 180o - 2 góc bằng nhau)
- MB = MC (vì AM là trung tuyến).
b./ => ME = MF (cạnh tương ứng của 2 tam giác bằng nhau) => M nằm trên trung trực của EF (vì cách đều 2 đầu của EF) (1)
\(\Delta BEM=\Delta CFM\)=> BE = CF => AE = AF ( vì cùng bằng AB - BE = AC - CF)
=> A nằm trên trung trực của EF (vì cách đều 2 đầu của EF) (2)
Từ (1) (2) => AM là trung trực của EF.
![](https://rs.olm.vn/images/avt/0.png?1311)
a) Chứng minh:BEM=CFM
Xét tam giác BEM và tam giác CFM, có:
- góc BEM = góc CFM = 90 độ (do ME vuông góc AB; MF vuông góc AC)
- MB = MC (AM là trung tuyến, trung trực của tam giác ABC)
- góc B = góc C (do tam giác ABC cân tại A)
=> tam giác BEM và tam giác CFM (tam giác vuông có cạnh huyền, góc nhọn bằng nhau) (đpcm)
b)Chứng minh: AM là trung trực của EF
Gọi I là điểm giao nhau của AM và EF
Xét tam giác AEI và tam giác AFI, có
- AE = AF (do AE = AB - EB, AF = AC - FC; mà AB = AC co tam giác ABC cân, EB = FC do tam giác BEM = tam giác CFM)
- góc EAI = góc FAI (do AM là trung tuyến, trung trực, phân giác của tam giác cân ABC)
- cạnh AI chung
=> tam giác AEI = tam giác AFI
=> AR = AF =>tam giác AEF cân tại F (1)
Thêm nữa: IE = IF => I là trung điểm của EF (2)
Từ (1) và (2) => AI là trung tuyến của tam giác cân AEF, và cũng là là trung trực của tam giác AEF
=> AI vuông góc EF tại I
mà A,I,M thẳng hàng
=> AM là trung trực của EF
c) Từ B kẻ đường thẳng vuông góc với AB tại B,từ C kẻ đường thẳng vuông góc với AC tại C,hai đường thẳng này cắt nhau tại D.Chứng minh rằng ba điểm A,M,D thẳng hàng
Xét tam giác vuông ABD và tam giác vuông ACD, có
- AB = AC
- BAD = CAD
- AD chung
=> tam giác vuông ABD = tam giác vuông ACD
=> DB = DC
=> tam giác DBC cân tại D
mà M là trung điểm BC
=> DM là trung trực, trung tuyến, phân giác của tam giác cân DBC
=> góc BMD = 90 độ
Ta có góc AMB = 90 độ; góc BMD = 90 độ
=> góc AMB + góc BMD = 90 độ + 90 độ = 180 độ
=> 3 điểm A,M,D thẳng hàng
a) do tam giac abc can tai a (gt)
-> ab=ac(t/c)
-> goc b=goc c(t/c)
theo gt am la trung tuyen
->m la trung diem cua bc
->bm=cm=bc/2 (t/c)
xet tam giac bem va tam giac cem co:
goc bem=cem=90 do
goc b=goc c (cmt)
bm=cm (cmt)
-> tam giac bem = tam giac cem (ch-gn)
cau a cua co giao lan thieu
![](https://rs.olm.vn/images/avt/0.png?1311)
a: Xét ΔEBM vuông tại E và ΔFCM vuông tại F có
MB=MC
góc B=góc C
=>ΔEBM=ΔFCM
b: Xet ΔAEM vuông tại E và ΔAFM vuông tại F có
AM chung
ME=MF
=>ΔAEM=ΔAFM
=>AE=AF
mà ME=MF
nên AM là trung trực của EF
c: Xét ΔABC có AE/AB=AF/AC
nên EF//BC
d: Xet ΔABD vuông tại B và ΔACD vuông tại C có
AD chung
AB=AC
=>ΔABD=ΔACD
=>BD=CD
=>D nằm trên trung trực của BC
=>A,M,D thẳng hàng
![](https://rs.olm.vn/images/avt/0.png?1311)
A E B C F I M D
a) Xét tam giác BEM và tam giácCFM
có:BM=MC(gt)
góc EBM=gócFCM(tam giác ABC can^)
->T/g BEM=t/g CFM(c.huyền g. nhon)
b)
Xét tam giác vg AEM va t/g vg AFM
có:EM=MF(t/g BEM=t/gAFM)
AM là cạnh chung
->t/g AEM =t/g AFM( c/ huyền -c.góc vg)
->AE=AF(2 cạnh tương ứng)
Xét tam giác AEI và t/g AFI
có:MF=EM(t/g BEM= t/g CFM)
AM là cạnh chung
AF=AE(C/ m trên)
->t/g AEI =t/g AFI(c-c-c)
->EI = IF(2 cạnh tương ứng)
->góc AIE= góc AIF(2 tương ứng)
=>AE là đường trung trực của EF
c(mik ko pt lm)
a và b bạn Hương Sơn
c) Ta có:
\(\Delta ABC\)cân
có AM là đường trung tuyến
=> AM cũng là đường trung trực
=> \(AM\perp BC\)
=> AM = 90 độ
Vì \(\Delta ABC\)cân
=> Góc ABM = góc ACM (1)
mà Góc ABD = góc ACD = 90 độ (2)
Từ (1) và (2) => Góc MBD = góc MCD
Xét \(\Delta DMB\)và \(\Delta DMC\)có :
DM : cạnh chung (1)
Góc MBD = góc MCD ( chứng minh trên ) (2)
BM = MC ( vì AM là đường trung tuyến của tam giác ABC ) (3)
Từ (1) ; (2) và (3) => \(\Delta DMB=\Delta DMC\)(cạnh - góc - cạnh)
=> Góc CMD = góc BMD ( cặp góc tương ứng)
Mà Góc CMD + góc BMD = 180 độ
=> Góc CMD = BMD = 180 : 2 = 90 độ
Vì Góc AMC = 90 độ ( vì AM là đường trung trực)
và góc CMD = 90 độ
=> AMC + CMD = AMD
=> 90 + 90 = AMD
=> AMD = 180 độ
=> Ba điểm A ; M ; D thẳng hàng. ( điều phải chứng minh)
Chúc bạn học tốt !
xet 2 tg vuong aem va afm = nhau vi e = f =90o ; am chung; a1 =a2 vi t/c tg can
nen bạn co AE= AF bạn suy ra tg AEF cân vay AM la dg trg truc ( t/c tg cân)
AM vua la dg trg trục cua BC vua la dg trg trục cua EF