Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔADB và ΔADC có
AB=AC
góc BAD=góc CAD
AD chung
=>ΔABD=ΔACD
b: Xét ΔAMD vuông tại M và ΔAND vuông tại N có
AD chung
góc MAD=góc NAD
=>ΔMAD=ΔNAD
=>MD=DN
=>ΔDMN cân tại D
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
!!!!!!!!!!!!!!!!111
a, xét tam giác tam giác ADB và am giác ADC:
Ab=ac (gt)
ad chung
góc adc = góc adb=90 độ (gt)
a) Xét ΔABD vuông tại D và ΔACD vuông tại D có
AB=AC(ΔABC cân tại A)
AD chung
Do đó: ΔABD=ΔACD(cạnh huyền-cạnh góc vuông)
Suy ra: DB=DC(hai cạnh tương ứng)
a) Xét ΔADB vuông tại D và ΔADC vuông tại D có
AB=AC(ΔABC cân tại A)
AD chung
Do đó: ΔADB=ΔADC(cạnh huyền-cạnh góc vuông)
Suy ra: DB=DC(Hai cạnh tương ứng)
b) Ta có: ΔADB=ΔADC(cmt)
nên \(\widehat{BAD}=\widehat{CAD}\)(hai góc tương ứng)
hay \(\widehat{EAD}=\widehat{FAD}\)
Xét ΔEAD vuông tại E và ΔFAD vuông tại F có
AD chung
\(\widehat{EAD}=\widehat{FAD}\)(cmt)
Do đó: ΔEAD=ΔFAD(cạnh huyền-góc nhọn)
Suy ra: AE=AF(Hai cạnh tương ứng)
Xét ΔAEF có AE=AF(cmt)
nên ΔAEF cân tại A(Định nghĩa tam giác cân)
a: XétΔADB và ΔADC có
AD chung
DB=DC
AB=AC
Do đó: ΔABD=ΔACD
b: ta có: ΔABC cân tại A
mà AD là trung tuyến
nên AD là đường cao
c: BD=BC/2=5cm
nên AD=12cm