Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
Hình các bạn tự vẽ nhé !
a)VÌ \(\Delta ABC\)cân tại \(A\)có \(BM;CN\)là đường trung tuyến
\(\Rightarrow AN=BN=AM=CM=\frac{1}{2}AB=\frac{1}{2}AC\)
\(\Rightarrow\Delta ANM\)cân ( vì AN=AM )
Vì \(\Delta ANM;\Delta ABC\)cùng cân mà có \(\widehat{A}\)chung nên \(\widehat{ANM}=\widehat{AMN}=\widehat{ABC}=\widehat{ACB}\)(đpcm)
Vì \(\widehat{AMN};\widehat{ACB}\)là hai góc đồng vị mà \(\widehat{AMN}=\widehat{ACB}\)(chứng minh trên) nên MN song song với BC (đpcm)
b) Vì G là giao điểm của BM và CN mà BM và CN là 2 đường trung tuyến nên G là trọng tâm của \(\Delta ABC\)
\(\Rightarrow AG\)là đường trung tuyến của \(\Delta ABC\)từ đỉnh A xuống cạnh BC
VÌ trong tam giác cân , đường trung tuyến xuất phát từ đỉnh đối diện với cạnh đáy đồng thời là đường trung trực ứng với cạnh đáy
nên \(AG⊥BC\)
Theo (a) \(BC\)song song với \(MN\)mà \(AG⊥BC\)nên \(AG⊥MN\)(đpcm)
![](https://rs.olm.vn/images/avt/0.png?1311)
A B C N M G
a) Xét \(\Delta BMC\) và \(\Delta CNB\) có:
BN = CM (gt)
\(\widehat{ABC=\widehat{ACB}}\)(vì \(\Delta ABC\) cân)
BC: cạnh chung
Vậy: \(\Delta BMC\) = \(\Delta CNB\) (c-g-c)
b) Ta có: \(\widehat{ANM=\widehat{ABC}}\) (hai góc đồng vị)
Suy ra: NM // BC.
c) Ta có: AN = AB - BN
AM = AC - CM
Mà AB = AC (gt)
BN = CM (\(\Delta BMC\) = \(\Delta CNB\))
Suy ra: AN = AM
Do đó: A nằm trên đường trung trực của đoạn thẳng MN
Vậy: AG \(\perp\) MN (đpcm).
![](https://rs.olm.vn/images/avt/0.png?1311)
A B C G M N
vì tgiac ABC cân tại A
có BM và CN là trung tuyến=> AM=MC=AN=NB
a, xét tgiac BMC và tgiac CNB có:
BC là cạnh chung
góc B= góc C(gt)
BM=CN(cmt)
vậy tgiac BMC=Tgiac CNB(c.g.c)
b. xét tgiac AMN có AM=AN(cmt)
=> tgiac AMN cân tại đỉnh A
ta lại có tgiac ABC cân tại A
Vậy góc ANM= góc ABC= (180-góc A):2
mà góc ANM và góc ABC ở vị trí đồng vị => MN//BC
c.ta có BM cắt CN tại G=> G là trọng tâm tgiac ABC=> AG là đường trung tuyến ứng vơi cạnh BC
mà tamgiac ABC cân tại A nên đường trung tuyến AG cũng là đường cao vậy AG vuông góc với BC
mà BC//MN nên AG vuông góc với MN(từ vuông góc đến //)
![](https://rs.olm.vn/images/avt/0.png?1311)
a: Xét ΔNBC và ΔMCB có
NB=MC
góc NBC=góc MCB
BC chung
Do đo: ΔNBC=ΔMCB
b: Ta có: ΔAMN cân tại A
nên góc ANM=(180-góc A)/2(1)
Ta có: ΔABC cân tại A
nên góc ABC=(180-góc A)/2(2)
Từ (1) và (2) suy ra góc ANM=góc ABC
=>MN//BC
c: Xét ΔGBC có góc GBC=góc GCB
nên ΔGBC cân tại G
=>GB=GC
mà AB=AC
nên AG là đường trung trực của BC
=>AG vuông góc với BC
=>AG vuông góc với MN
![](https://rs.olm.vn/images/avt/0.png?1311)
a/ Ta có: tg ABC cân tại A
mà BM, CN là trung tuyến tg ABC
=> BM = CM
Xét tg BMC và tg CNB
Có: BC chung
góc NBC = góc MCB ( tg ABC cân tại A)
BM = CM (cmt)
=> tg BMC = tg CNB ( c-g-c)
Ta có: tg ABC cân tại A
mà BM, CN trung tuyến tg ABC
=> AM= AN
Xét tg AMN:
Có: AM= AN (cmt)
=> tg AMN cân tại A
Xét tg AMN cân tại A(cmt)
Có: góc ANM = (180 độ - góc NAM)/2 ( định lí)
Xét tg ABC cân tại A (gt)
Có góc ABC = (180 độ - góc BAC)/2 ( định lí)
=> góc ANM = góc ABC ( =180 độ - BAC)/2)
=> NM//BC ( 2 góc đồng vị bằng nhau)
A B C M N G
c/ Vì trong tg cân, đường trung tuyến xuất phát từ đỉnh đối diện với cạnh đáy đồng thời là đường trung trực ứng với cạnh đáy nên AG vuông góc MN
![](https://rs.olm.vn/images/avt/0.png?1311)
a) Sửa đề: ΔAMB=ΔANC
Xét ΔAMB vuông tại M và ΔANC vuông tại N có
AB=AC(ΔABC cân tại A)
\(\widehat{BAM}\) chung
Do đó: ΔAMB=ΔANC(cạnh huyền-góc nhọn)
b) Xét ΔBMC vuông tại M và ΔCNB vuông tại N có
CB chung
\(\widehat{BCM}=\widehat{CBN}\)(hai góc ở đáy của ΔABC cân tại A)
Do đó: ΔBMC=ΔCNB(cạnh huyền-góc nhọn)
c) Ta có: ΔBMC=ΔCNB(cmt)
nên \(\widehat{MBC}=\widehat{NCB}\)(hai góc tương ứng)
hay \(\widehat{IBC}=\widehat{ICB}\)
Xét ΔIBC có \(\widehat{IBC}=\widehat{ICB}\)(cmt)
nên ΔIBC cân tại I(Định lí đảo của tam giác cân)
\(\Leftrightarrow IB=IC\)(hai cạnh bên)
Ta có: ΔANC=ΔAMB(cmt)
nên AN=AM(hai cạnh tương ứng)
Xét ΔAMI và ΔANI có
AM=AN(cmt)
AI chung
MI=NI(cmt)
Do đó: ΔAMI=ΔANI(c-c-c)
chờ chút