Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Hình bạn tự vẽ nhé!
a. Ta có:
M là trung điểm của AC => BM là đường trung tuyến của tam giác ABC.
N là trung điểm của AB => CN là đường trung tuyến của tam giác ABC.
Mà tam giác ABC cân.
=> BM = CN
Ta có AN + NB = AB
AM + MC = AC
Mà AN = NB ( N là trung điểm của AB)
AM = MC ( M là trung điểm của AC)
AB = AC ( tam giác ABC cân tại A)
=> AN = NB=AM = MC
Xét tam giác ABM và tam giác ACN có:
AB = AC (GT)
BM = CN (cmt)
AM = AN (cmt)
=> tam giác ABM = tam giác ACN (cạnh-cạnh-cạnh)
=> Góc ABM = góc ACN ( hai góc tương ứng)
b. Ta có:
Góc ABM + góc MBC = góc ABC
Góc ACN + góc NCB = góc ACB
Mà góc ABM = góc ACN (cmt)
góc ABC = góc ACB (tam giác ABC cân tại A)
=> Góc MBC = góc NCB
=> Tam giác IBC cân tại I.
\(a,ABM=MBC=\frac{ABC}{2}\)(BM là p/g t/g ABC)
\(ACN=NCB=\frac{ACB}{2}\)(CN là p/g t/g ABC)
mà ABC= ACB(t/g ABC cân A)
\(\rightarrow ABM=ACN\)
Xét t/g ABM và t/g ACN
Có ^BAC chung
AC= AB(t/g ABC cân A)
^ABM= ^ACN(cmt)
\(\rightarrow\)t/g ABM = t/g ACN(gcg)
a: Xét ΔABM vuông tại M và ΔACN vuông tại N có
AB=AC
\(\widehat{BAM}\) chung
Do đó: ΔABM=ΔACN
Suy ra: BM=CN
b: Ta có: ΔABM=ΔACN
nên \(\widehat{ABM}=\widehat{ACN}\)
c: Xét ΔNBC vuông tại N và ΔMCB vuông tại M có
BC chung
NC=MB
Do đó: ΔNBC=ΔMCB
Suy ra: \(\widehat{ICB}=\widehat{IBC}\)
hay ΔIBC cân tại I
d: Ta có: AB=AC
nên A nằm trên đường trung trực của BC(1)
Ta có: IB=IC
nên I nằm trên đường trung trực của BC(2)
Ta có: KB=KC
nên K nằm trên đường trung trực của BC(3)
Từ (1), (2) và (3) suy ra A,K,I thẳng hàng