
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Xét tam giác vuông ABD và tam giác vuông ACE có
góc A: chung
=> tam giác ABD = tam giác ACE (cạnh huyền - góc nhọn)
=> BD=CE và AD=AE(hai cạnh tương ứng)
b) Vì AB=AC và AE=AD => AB-AE=AC-AD => BE=CD
Xét tam giác vuông OEB và tam giác vuông ODC có
BE=CD
góc BOE = góc COD (đối đỉnh)
=> tam giác OEB = tam giác ODC(cạnh góc vuông-góc nhọn kề cạnh) => OB=OC
c) Xét tam giác AOB và tam giác AOC có
AB=AC
OB=OC
AO: cạnh chung
=> tam giác AOB = tam giác AOC (c.c.c)
=> góc OAB=góc OAC(hai góc tương ứng)
=> AO la tia phân giác góc BAC
a) Xét tam giác ABD và tam giác ACE có
góc ADB = góc AEC = 90 độ
AB=AC
góc A: chung
=> tam giác ABD = tam giác ACE (cạnh huyền - góc nhọn)
=> BD=CE và AD=AE
b) Vì AB=AC và AE=AD => AB-AE=AC-AD => BE=CD
Xét tam giác OEB và tam giác ODC có
góc OEB = góc ODC = 90 độ
BE=CD
góc BOE = góc COD (đối đỉnh)
=> tam giác OEB = tam giác ODC => OB=OC
c) Xét tam giác AOB và tam giác AOC có
AB=AC
OB=OC
AO: cạnh chung
=> tam giác AOB = tam giác AOC (c.c.c)
=> góc OAB=góc OAC
=> AO la tia phân giác góc BAC
Bài mk lm như dzị ak
a) Vì tam giác ABC cân tại a (GT)
=> góc ABC = góc ACB (ĐL) hay góc EBC = góc DCB (1)
Vì BD vuông góc với AC (GT) => Góc BDC = 90 độ (ĐN) (2)
Vì CE vuông góc với AB (GT) => Góc CEB = 90 độ (ĐN) (3)
Từ (2), (3) => Góc BDC = góc CEB = 90 độ (4)
Xét tam giác BEC và tam giác CDB có :
Góc BDC = góc CEB = 90 độ (Theo (4))
BC chung
góc EBC = góc DCB (Theo (1))
=> tam giác BEC = tam giác CDB (ch - gn) (5)
=> CE = BD (2 cạnh tương ứng)
b) Từ (5) => BE = CD (2 cạnh tương ứng) (6)
Từ (5) => Góc BCE = góc CBD (2 góc tương ứng) (7)
Mà góc BCE + góc ACE = góc ACB
góc CBD + góc ABD = góc ABC
góc ACB = góc ABC (Theo (1))
Ngoặc '}' 4 điều trên
=> Góc ACE = góc ABD hay góc DCO = góc EBO (8)
Xét tam giác BEO và tam giác CDO có :
Góc BEO = góc CDO = 90 độ (Theo (4))
BE = CD (Theo (6))
Góc EBO = góc DCO (Theo (8))
=> tam giác OEB = tam giác ODC (g.c.g) (9)
c) Từ (9) => OB = OC (2 cạnh tương ứng) (10)
Vì tam giác ABC cân tại A (GT) => AB = AC (ĐN) (11)
Xét tam giác ABO và tam giác ACO có :
AO chung
OB = OC (Theo (10))
AB = AC (Theo (11))
=> tam giác ABO = tam giác ACO (c.c.c)
=> Góc BAO = góc CAO (2 góc tương ứng)
Mà AO nằm giữa BO và CO
=> AO là tia pg của góc BAC (đpcm)
d) Ta có : BE = CD (Theo (6))
Mà BE = 3cm (GT)
=> CD = 3cm (12)
Xét tam giác BCD vuông tại D có :
BD2 + CD2 = BC2 (ĐL pi-ta-go)
Mà CD = 3cm (Theo (12))
BC = 5cm (GT)
=> BD2 + 32 = 52
=> BD2 + 9 = 25
=> BD2 = 25 - 9
=> BD2 = 16
=> BD2 = \(\sqrt{14}\)
=> BD = 4cm
Vậy a)... b)... c)... d)...
a)xét ΔEBC và ΔDBC có:
BC : cạnh chung
góc BEC = góc BDC ( góc vuông)
góc ABC = góc ACB ( vì AB = AC--> ΔABC cân tại A---> góc ABC = góc ACB)
---> ΔEBC = ΔDCB ( cạnh huyền- góc nhọn)
--->BD = CE ( hai cạnh tương ứng)
b)Xét ΔOEB và ΔODC có :
góc BEC = góc BDC ( góc vuông)
góc EOB = góc DOB ( đối đỉnh)
---> góc EBO = góc DCO
EB = DC (ΔEBC = ΔDCB )
---> ΔOEB = ΔODC ( g.c.g)
c) Xét ΔABO và ΔACO có :
AO : cạnh chung
AB = AC ( GT)
BO = CO ( ΔOEB = ΔODC)
--->ΔABO = ΔACO ( c.c.c)
---> góc BAO= góc CAO ( hai góc tương ứng)
---> AO là tia phân giác của góc BAC
a) tam giác ABC có AB=AC (gt)
=> BD=CE
b)BD=CE (cmt)
=> OEB=ODC
c)vì O là giao điểm BD và CE (gt)
mà OEB=ODC
=> AO là tia phân giác của BAC