Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Xét tam giác BOA và tam giác AOC có:
OB=OA
OC=OA
AB=AC
=> \(\Delta BOA=\Delta AOC\)
=> góc OBA=góc OAC
b) Xét tam giác AON và tam giác BOM
có: AB=AO
BM=AN
\(\widehat{MBO}=\widehat{NAO}\)( theo a)
=> \(\Delta AON=\Delta BOM\)
=> OM=ON
=> O thuộc đường rung trực MN
tự vẽ hình nha
a, Xét tg ABD và tg ACE có:
AB=AC (gt)
góc A chung
góc ADB = góc AEC (=90)
=>tg ABD = tg ACE (ch-gn)
=>BD=CE (1)
b, Xét tg OAD và tg OAE có;
AD=AE (tg ABD = tg ACE)
OA chung
góc ODA = góc OED (=90)
=>tg OAD = tg OAE (ch-cgv)
=>OD=OE (2)
Từ (1),(2) => BD - OD = CE - OE hay OB = OC
c, từ tg OAD = tg OAE (câu b) => góc OAD = góc OAE
Mà tia OA nằm giữa 2 góc này
=> OA là tia pg của góc BAC
d, Xét tg ABC cân tại A có: \(\widehat{B}=\widehat{C}=\frac{180^o-\widehat{A}}{2}\) (3)
Lại có AD=AE (tg ABD = tg ACE) => tg ADE cân tại A => \(\widehat{ADE}=\widehat{AED}=\frac{180-\widehat{A}}{2}\) (4)
Từ (3),(4) => \(\widehat{B}=\widehat{C}=\widehat{ADE}=\widehat{AED}\) hay góc B = góc AED
mà 2 góc này ở vị trí đồng vị
=>DE//BC
a, Kẻ OH vuông góc với BC
Ta có tam giác BEO=BHO( ch-gn )
=> BE=BH
Tương tự ta có : CH=CF
Mà BH+HC=BC => BE+CF=BC=5 ( Bạn tính BC theo định lý Pytago tam giác ABC nk )
Mà AB+AC=BE+FC+AE+AF=7 ( AE=AF vì AEOF là hình vuông )
=> AE=(7-5):2=1
=> AB+AC-BC=3+4-5=2=2AE ( đpcm )
O là điểm cách đều 3 đỉnh A, B, C
=> OA = OB = OC
Xét tam giác OAC có:
OA = OC (cmt)
=> OAC là tam giác cân
=> \(\widehat{OAC}=\widehat{OCA}\) (1)
Mặt khác:
Tam giác ABC cân tại A
=> AB = AC
Xét tam giác OAB và tam giác OAC có:
OA cạnh chung
AB = AC
OB = OC (cmt)
Do đó: tam giác OAB = tam giác OAC
<=> \(\widehat{OBA}=\widehat{OCA}\) (2)
Từ (1), (2)
=> \(\widehat{OBA}=\widehat{OAC}\) (đpcm)
☕T.Lam