K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 12 2021

a. Vì M,N là trung điểm AB,AC nen MN là đtb tg ABC

Do đó \(MN=\dfrac{1}{2}BC=3\left(cm\right)\)

b. Vì MN là đtb nên MN//BC hay BMNC là hình thang

Mà \(\widehat{B}=\widehat{C}\left(\Delta ABC\text{ cân tại A}\right)\) nên BMNC là ht cân

c. Vì AH là trung tuyến của tam giác ABC cân nên cũng là đg cao

Do đó \(AH\bot BC\)

Mà Q,M là trung điểm BH và AB nên QM là đtb 

Do đó \(QM//AH;QM=\dfrac{1}{2}AH\) hay \(QM//HP\)

Mà \(MN//BC\) nên \(MP//QH\)

Do đó QMPH là hbh

Mà \(AH\bot BC\) nên \(\widehat{PHQ}=90^0\)

Vậy QMPH là hcn

13 tháng 10 2021

a: Xét ΔABC có 

M là trung điểm của AB

N là trung điểm của AC

Do đó: MN là đường trung bình của ΔBAC

Suy ra: MN//BC

b: Xét tứ giác BMNC có MN//BC

nên BMNC là hình thang

mà \(\widehat{B}=\widehat{C}\)

nên BMNC là hình thang cân

24 tháng 12 2021

a: Xét ΔABC có

E là trung điểm của AB

F là trung điểm của AC

Do đó: EF là đường trung bình

=>EF//BC

24 tháng 12 2021

còn những câu sau thì s ạ?

 

21 tháng 10 2021

a, Vì M,N là trung điểm AB,AC nên MN là đtb tg ABC

Do đó MN//BC

b, Vì MN là đtb tg ABC nên \(MN=\dfrac{1}{2}BC=6\left(cm\right)\)

c, Vì MN//BC nên BMNC là hình thang

21 tháng 10 2021

giải chi tiết giúp em đc ko ạ 

 

21 tháng 12 2017

a)  \(\Delta ABC\) có  MA = MB;  NA = NC

\(\Rightarrow\)MN là đường trung bình của \(\Delta ABC\)

\(\Rightarrow\)MN // BC

\(\Rightarrow\)Tứ giác BMNC là hình thang

b)  \(\Delta ABC\)có  NA = NC;  QB = QC

\(\Rightarrow\)NQ // AB;   NQ = 1/2 AB

mà   MA = 1/2 AB

\(\Rightarrow\)NQ = MA

Tứ giác AMQN có   NQ // AM;   NQ = AM

\(\Rightarrow\)AMQN là hình bình hành

21 tháng 12 2017

c)  E là điểm đối xứng của H qua M

\(\Rightarrow\)ME = MH

Tứ giác AHBE  có  MA = MB (gt);  ME = MH (gt)

\(\Rightarrow\)AHBE là hình bình hành

mà  \(\widehat{AHB}\)= 900

\(\Rightarrow\)hình bình hành AHBE  là  hình  chữ nhật

a: Xét ΔABC có

\(\dfrac{AM}{AB}=\dfrac{AN}{AC}\)

Do đó: MN//BC

Xét tứ giác BMNC có MN//BC

nên BMNC là hình thang

mà \(\widehat{MBC}=\widehat{NCB}\)

nên BMNC là hình thang cân

b: Xét tứ giác AHCD có 

N là trung điểm của đường chéo AC

N là trung điểm của đường chéo HD

Do đó: AHCD là hình bình hành

mà \(\widehat{AHC}=90^0\)

nên AHCD là hình chữ nhật

 

c: Ta có: ΔABC cân tại A

mà AH là đường cao ứng với cạnh đáy BC

nên H là trung điểm của BC

Suy ra: BH=CH

mà CH=AD

nên BH=AD

Xét tứ giác ABHD có 

AD//BH

AD=BH

Do đó: ABHD là hình bình hành

d: Để AHCD trở thành hình vuông thì AH=CH

hay \(AH=\dfrac{BC}{2}\)

Xét ΔABC có

AH là đường trung tuyến ứng với cạnh BC

\(AH=\dfrac{BC}{2}\)

Do đó: ΔABC vuông tại A

hay \(\widehat{BAC}=90^0\)

26 tháng 10 2021

a: Xét ΔABC có

M là trung điểm của AB

N là trung điểm của AC

Do đó: MN là đường trung bình của ΔABC

Suy ra: MN//BC và \(MN=\dfrac{BC}{2}=5\left(cm\right)\)