Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét ΔAHB vuông tại H và ΔAHC vuông tại H có
AB=AC
AH chung
=>ΔAHB=ΔAHC
b: Xét ΔDMH vuông tại M và ΔDMC vuông tại M có
DM chung
MH=MC
=>ΔDMH=ΔDMC
=>góc DHC=góc DCH
=>góc DHC=góc ABH
=>DH//AB
c: Xét ΔAHC có
M là trung điểm của CH
MD//AH
=>D là trung điểm của AC
Xét ΔABC có
BD,AH là đường cao
BD cắt AH tại G
=>G là trọng tâm

a: Xét ΔAHB vuông tại H và ΔAHC vuông tại H có
AB=AC
AH chung
=>ΔAHB=ΔAHC
b: Xét ΔDMC vuông tại M và ΔDMH vuông tại M có
DM chung
MH=MC
=>ΔDMC=ΔDMH
Xét ΔAHC có
M là trung điểmcủa CH
MD//AH
=>D là trung điểm của AC
=>DH//AB
c: Xét ΔABC có
AH,BD là trung tuyến
AH cắt BD tại G
=>G là trọng tâm

a, Xét tam giác ABH và tam giác ACH có
góc bah =góc cah
ab =ac
góc B = góc C
=> tam giác abh = tam giác ach (g.c.g)
=>hb=hc
=>góc ahb = góc ahc
Mà góc AHB + góc AHC=180 độ
=>ah vuông góc với bc
b,bh=hc=36:2=18cm
áp dụng định lí PY-TA-GO vào tam giác ABH ta có
ab^2=ah^2+bh^2
=>ah^2=ab^2-bh^2
=>ah=24cm
a) xét tam giác BAH và tam giác HAC có:
AB = AC (gt)
góc A1 = góc A2 ( vì AH là p/giác)
AH chung
=> tam giác BAH = tam giác HAC ( c.g.c)
=> HB = HC
ta có: góc AHB + góc AHC = 1800 ( kề bù)
=> 2 góc AHB = 1800
=> góc AHB = \(\frac{180^0}{2}=90^0\)
=> AH vuông góc BC

a: Xét ΔAHB vuông tại H và ΔAHC vuông tại H có
AB=AC
AH chung
=>ΔAHB=ΔAHC
b: Xét ΔABC có
H là trung điểm của CB
HD//AB
=>D là trung điểm của AC
ΔAHC vuông tại H có HD là trung tuyến
nên DH=DC
=>ΔDHC cân tại D
=>DM vuông góc HC
=>DM//AH
a: Xét ΔDMC vuông tại M và ΔDMH vuông tại M có
DM chung
MC=MH
Do đó: ΔDMC=ΔDMH
b: ΔDMC=ΔDMH
=>\(\hat{DCM}=\hat{DHM}\)
mà \(\hat{DCM}=\hat{ABC}\) (ΔABC cân tại A)
nên \(\hat{DHM}=\hat{ABC}\)
mà hai góc này là hai góc ở vị trí đồng vị
nên DH//AB
c: Ta có: ΔDMC=ΔDMH
=>DC=DH
Ta có: \(\hat{DHC}+\hat{DHA}=\hat{AHC}=90^0\)
\(\hat{DCH}+\hat{DAH}=90^0\) (ΔAHC vuông tại H)
mà \(\hat{DHC}=\hat{DCH}\) (ΔDHC cân tại D)
nên \(\hat{DHA}=\hat{DAH}\)
=>DH=DA
mà DC=DH
nên DA=DC
=>D là trung điểm của AC
Xét ΔAHB vuông tại H và ΔAHC vuông tại H có
AH chung
AB=AC
Do đó: ΔAHB=ΔAHC
=>HB=HC
=>H là trung điểm của BC
Xét ΔABC có
BD,AH là các đường trung tuyến
BD cắt AH tại G
Do đó: G là trọng tâm của ΔABC
=>\(GA=\frac23AH;GB=\frac23BD\)
Xét ΔGAB có GA+GB>AB
=>\(\frac23\left(AH+BD\right)>AB\)
=>\(AH+BD>\frac32AB\)