K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét ΔADB vuông tại D và ΔAEC vuông tại E có

AB=AC

\(\hat{DAB}\) chung

Do đó: ΔADB=ΔAEC

b: ΔADB=ΔAEC

=>DB=EC và AD=AE

Ta có: AE+EB=AB

AD+DC=AC
mà AE=AD và AB=AC

nên EB=DC

Xét ΔEBC vuông tại E và ΔDCB vuông tại D có

BC chung

EB=DC

Do đó: ΔEBC=ΔDCB

=>\(\hat{ECB}=\hat{DBC}\)

=>\(\hat{HBC}=\hat{HCB}\)

=>ΔHBC cân tại H

c: ta có: HB=HC

HC>HD(ΔHDC vuông tại D)

DO đó: HB>HD

d: Xét ΔHNB và ΔHMC có

HN=HM

\(\hat{NHB}=\hat{MHC}\) (hai góc đối đỉnh)

HB=HC

Do đó: ΔHNB=ΔHMC

=>NB=MC

Gọi K là giao điểm của BN và CM

Ta có: BM=BH+HM

CN=CH+HN

mà BH=CH và HM=HN

nên BM=CN

Xét ΔBNM và ΔCMN có

BN=CM

BM=CN

MN chung

Do đó: ΔBNM=ΔCMN

=>\(\hat{BNM}=\hat{CMN}\)

=>\(\hat{KMN}=\hat{KNM}\)

=>KM=KN

ta có; KB+BN=KN

KC+CM=KM

mà BN=CM và KN=KM

nên KB=KC

=>K nằm trên đường trung trực của BC(1)

ta có: HB=HC

=>H nằm trên đường trung trực của BC(2)

ta có: AB=AC

=>A nằm trên đường trung trực của BC(3)

Từ (1),(2),(3) suy ra A,H,K thẳng hàng

=>AH,BN,CM đồng quy tại K

25 tháng 4 2018

Sory mình chưa đọc hết

A) Xét ACE và ABD có:

Góc BAC chung

góc AEC=gocsADB = 90

=> ACE đồng dạng với ABD

B) Xét tam giác EHB và tam giác DHC

EHB=DHC(2 góc đối đỉnh)

BEH=CDH=90

=> EHB đồng dạng với DHC

=> EH/HB = HD/HC (tính chất)

=> EH.CH=HD.HB

C) Vì BD,EC là 2 đường cao của tam giác ABC cắt nhau tại H

=> AH cũng là đường cao

=>AH vuông góc với BC

Xét AFC và FIC

ACB chung

AFC=FIC=90

=>Tam giác AFC đồng dạng với tam giác FIC

=> IF/IC=FA/FC(tính chất)

D) gọi NI cắt MF tại K

25 tháng 4 2018

BD Và CE là đường gì bạn ơi???
 

a: Xét ΔCDE vuông tại D và ΔCAB vuông tại A có

góc ACB chung

Do dó ΔCDE đồng dạng với ΔCAB

=>CD/CA=CE/CB

=>CD/CE=CA/CB

=>ΔCDA đồng dạng với ΔCEB

=>EB/DA=BC/AC

mà BC/AC=AC/CH

nên EB/DA=AC/CH=BA/HA

=>BE/AD=BA/HA

=>\(BE=\dfrac{AB}{AH}\cdot AD=\dfrac{AB}{AH}\cdot\sqrt{AH^2+HD^2}\)

\(=\dfrac{AB}{AH}\cdot\sqrt{AH^2+AH^2}=AB\sqrt{2}\)

b: Xét ΔABE vuông tại A có sin AEB=AB/BE=1/căn 2

nên góc AEB=45 độ

=>ΔABE vuông cân tại A

=>AM vuông góc với BE

BM*BE=BA^2

BH*BC=BA^2

Do đó: BM*BE=BH/BC

=>BM/BC=BH/BE

=>ΔBMH đồng dạng với ΔBCE

15 tháng 9

loading...a) Tứ giác ACKH có:

I là trung điểm của AK (gt)

I là trung điểm của HC (gt)

⇒ ACKH là hình bình hành

⇒ AC // HK

b) Do HM ⊥ AB (gt)

⇒ ∠AMH = 90⁰ (1)

Do HN ⊥ AC (gt)

⇒ ∠ANH = 90⁰ (2)

Do ∆ABC vuông tại A (gt)

⇒ ∠BAC = 90⁰

⇒ ∠MAN = 90⁰ (3)

Từ (1), (2) và (3) suy ra ∠MAN = ∠AMH = ∠ANH = 90⁰

Tứ giác AMHN có:

∠MAN = ∠AMH = ∠ANH = 90⁰ (cmt)

⇒ AMHN là hình chữ nhật

⇒ AN = HM

Xét hai tam giác vuông: ∆ANH và ∆MHN có:

AN = HM (cmt)

HN là cạnh chung

⇒ ∆ANH = ∆MHN (hai cạnh góc vuông)

⇒ ∠HAN = ∠HMN (hai góc tương ứng)

⇒ ∠HAC = ∠HMN

⇒ ∠HAC = ∠KMN (4)

Do ACKH là hình bình hành (cmt)

⇒ ∠HAC = ∠HKC

⇒ ∠HAC = ∠MKC (5)

Từ (4) và (5) suy ra ∠KMN = ∠MKC

Do AC // KH (cmt)

⇒ NC // KM

Tứ giác MNCK có:

NC // KM (cmt)

⇒ MNCK là hình thang

Mà ∠KMN = ∠MKC (cmt)

⇒ MNCK là hình thang cân

c) Do O là giao điểm của MN và AH (gt)

AMHN là hình chữ nhật (cmt)

⇒ O là trung điểm của AH

∆AHC có:

I là trung điểm của HC (gt)

⇒ AI là đường trung tuyến của ∆AHC (6)

O là trung điểm của AH (cmt)

⇒ CO là đường trung tuyến của ∆AHC (7)

D là giao điểm của CO và AK (gt)

⇒ D là giao điểm của CO và AI (8)

Từ (6), (7) và (8) suy ra D là trọng tâm của ∆AHC

loading...

Do I là trung điểm của AK (gt)

⇒ AK = 2AI

loading...

Hay AK = 3AD

3 tháng 8 2016

Bài 2

gọi E là trung điểm của KB

Vì tam giác CKB có BM=MC ; BE=EK

=>EM//KC

Vì tam giác ENM có AN=AM ; KA//EM

=>EK=KN

Vì KN=KE=EB=>NK=1/2KB

27 tháng 7 2018

mình cũng có câu 3 giông thế

26 tháng 7 2019

Căn bạc 2 ạ

Bài 1 :Cho ABC nhọn (AB < AC). Gọi M là trung điểm của BC. Trên tia AM lấy đi ểm N sao cho M là trung điểm của AN.a/. Ch/m : ΔAMB = ΔNMCb/. Vẽ CD \bot AB (D\in AB). So sánh góc ABC và góc BCN. Tính góc DCN.c/. Vẽ AH \bot BC (H \in BC), trên tia đối của tia HA lấy điểm I sao cho HI = HA.Ch/m : BI = CN.BÀI 2 :Vẽ góc nhọn xAy. Trên tia Ax lấy hai điểm B và C (B nằm giữa A và C). Trên tia Ay lấy hai điểm D và E sao cho AD = AB; AE...
Đọc tiếp

Bài 1 :
Cho ABC nhọn (AB < AC). Gọi M là trung điểm của BC. Trên tia AM lấy đi ểm N sao cho M là trung điểm của AN.
a/. Ch/m : ΔAMB = ΔNMC

b/. Vẽ CD \bot AB (D\in AB). So sánh góc ABC và góc BCN. Tính góc DCN.

c/. Vẽ AH \bot BC (H \in BC), trên tia đối của tia HA lấy điểm I sao cho HI = HA.

Ch/m : BI = CN.

BÀI 2 :

Vẽ góc nhọn xAy. Trên tia Ax lấy hai điểm B và C (B nằm giữa A và C). Trên tia Ay lấy hai điểm D và E sao cho AD = AB; AE = AC

a) Chứng minh BE = DC

b) Gọi O là giao điểm BE và DC. Chứng minh tam giác OBC bằng tam giác ODE.

c) Vẽ trung điểm M của CE. Chứng minh AM là đường trung trực của CE.

Bài 3

Cho tam giác ABC ( AB< AC ) . Gọi I là trung điểm của AC. Trên tia đối của tia IB lấy điểm D, sao cho IB = ID. Chứng minh :

a) Tam giác AIB bằng tam giác CID.

b) AD = BC v à AD // BC.

Bài 4.

Cho tam giác ABC ( AB< AC ) . Gọi I là trung điểm của AC. Trên tia đối của tia IB lấy điểm D, sao cho IB = ID. Chứng minh :

a) Tam giác AIB bằng tam giác CID.

b) AD = BC v à AD // BC.

Bài 4.

Cho tam giác ABC ( AB< AC ) . Gọi I là trung điểm của AC. Trên tia đối của tia IB lấy điểm D, sao cho IB = ID. Chứng minh :

a) Tam giác AIB bằng tam giác CID.

b) AD = BC v à AD // BC.

BÀI 4

Cho tam giác ABC có góc A =350 . Đường thẳng AH vuông góc với BC tại H. Trên đường vuông góc với BC tại B lấy điểm D không cùng nửa mặt phẳng bờ BC với điểm A sao cho AH = BD.

a) Chứng minh ΔAHB = ΔDBH.

b) Chứng minh AB//HD.

c) Gọi O là giao điểm của AD và BC. Chứng minh O là trung điểm của BH.

d) Tính góc ACB , biết góc BDH= 350 .

Bài 5 :

Cho tam giác ABC cân tại A và có \widehat{A}=50^0  .

Tính \widehat{B} và \widehat{C}
Lấy D thuộc AB, E thuộc AC sao cho AD = AE. Chứng minh : DE // BC.
Bài 6 :

Cho tam giác ABC cân tại A. Lấy D thuộc AC, E thuộc AB sao cho AD = AE.

Chứng minh : DB = EC.
Gọi O là giao điểm của BD và EC. Chứng minh : tam giác OBC và ODE là tam giác cân.
Chứng minh rằng : DE // BC.
Bài 7

Cho tam giác ABC. Tia phân giác của góc C cắt AB tại D. trên tia đối của tia CA lấy điểm E sao cho CE = CB.

Chứng minh : CD // EB.
Tia phân giác của góc E cắt CD tại F. vẽ CK vuông góc EF tại K. chứng minh : CK Tia phân giác của góc ECF.
Bài 8 :

Cho tam giác ABC vuông tại A có \widehat{B}=60^0 . Vẽ Cx vuông góc BC, trên tia Cx lấy điểm E sao cho CE = CA (CE , CA nằm cùng phía đối BC). trên tia đối của tia BC lấy điểm F sao cho BF = BA. Chứng minh :

Tam giác ACE đều.
A, E, F thẳng hàng.

1

Bài 3: 

a: Xét ΔAIB và ΔCID có

IA=IC

góc AIB=góc CID

IB=ID

Do đó: ΔAIB=ΔCID

b: Xét tứ giác ABCD có

I là trung điểm chung của AC và BD

nên ABCD là hình bình hành

Suy ra: AD//BC va AD=BC

Bài 6: 

a: Xét ΔADB và ΔAEC có

AD=AE
góc A chung

AB=AC

Do đó: ΔADB=ΔAEC
SUy ra: BD=CE
b: Xét ΔEBC và ΔDCB có

EB=DC

BC chung

EC=BD

Do đó: ΔEBC=ΔDCB

Suy ra: góc OBC=góc OCB

=>ΔOBC cân tại O

=>OB=OC

=>OE=OD

=>ΔOED cân tại O

c: Xét ΔABC có AE/AB=AD/AC
nên ED//BC

a: Xét tứ giác BHCN có M là trung điểm chung của BC và HN

nên BHCN là hình bình hành

b: BHCN là hình bình hành

=>BH//CN

mà BH⊥AC

nên CN⊥CA

Ta có: BHCN là hình bình hành

=>CH//BN

mà CH⊥BA

nên BN⊥BA

Xét tứ giác ABNC có \(\hat{ABN}+\hat{ACN}+\hat{BAC}+\hat{BNC}=360^0\)

=>\(\hat{BAC}+\hat{BNC}=360^0-90^0-90^0=180^0\)

c: Xét ΔHKN có

D,M lần lượt là trung điểmcủa HK,HN

=>DM là đường trung bình của ΔHKN

=>DM//KN

=>BC//KN

Xét ΔCHK có

CD là đường cao

CD là đường trung tuyến

Do đó: ΔCHK cân tại C

=>CH=CK

mà CH=BN

nên CK=BN

Xét tứ giác BCNK có

BC//NK

BN=CK

Do đó: BCNK là hình thang cân