K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 5 2024

a) Do \(\Delta ABC\) cân tại A (gt)

\(\Rightarrow AB=AC\)

Xét hai tam giác vuông: \(\Delta AHB\) và \(\Delta AHC\) có:

\(AB=AC\left(cmt\right)\)

\(AH\) là cạnh chung

\(\Rightarrow\Delta AHB=\Delta AHC\) (cạnh huyền - cạnh góc vuông)

b) \(\Delta ABC\) cân tại A (gt)

\(AH\) là đường cao của \(\Delta ABC\) (gt)

\(\Rightarrow AH\) cũng là đường phân giác, đường trung tuyến của \(\Delta ABC\)

\(\Rightarrow\widehat{BAH}=\widehat{CAH}\)

\(\Rightarrow\widehat{DAH}=\widehat{HAC}\)

Do \(HD\) // \(AC\) (gt)

\(\Rightarrow\widehat{AHD}=\widehat{HAC}\)

Mà \(\widehat{DAH}=\widehat{HAC}\left(cmt\right)\)

\(\Rightarrow\widehat{AHD}=\widehat{DAH}\)

\(\Rightarrow\Delta AHD\) cân tại D

\(\Rightarrow AD=DH\)

c) Do \(\Delta ABC\) cân tại A (gt)

\(\Rightarrow\widehat{ABC}=\widehat{ACB}\)

\(\Rightarrow\widehat{DBH}=\widehat{ACB}\)

Do \(HD\) // \(AC\) (gt)

\(\Rightarrow\widehat{DHB}=\widehat{ACB}\) (đồng vị)

Mà \(\widehat{DBH}=\widehat{ACB}\left(cmt\right)\)

\(\Rightarrow\widehat{DHB}=\widehat{DBH}\)

\(\Rightarrow\Delta BHD\) cân tại D

\(\Rightarrow DH=BD\)

Mà \(DH=AD\left(cmt\right)\)

\(\Rightarrow AD=BD\)

\(\Rightarrow D\) là trung điểm của AB

\(\Rightarrow CD\) là đường trung tuyến của \(\Delta ABC\)

Lại có \(AH\) là đường trung tuyến của \(\Delta ABC\)

\(\Rightarrow G\) là trọng tâm của \(\Delta ABC\)

Do \(E\) là trung điểm của AC (gt)

\(\Rightarrow BE\) là đường trung tuyến của \(\Delta ABC\)

Mà \(G\) là trọng tâm của \(\Delta ABC\) (cmt)

\(\Rightarrow B,G,E\) thẳng hàng

 

\(\Rightarrow AH\) cũng là đường trung tuyến

a: Xét ΔAHB vuông tại H và ΔAHC vuông tại H có

AB=AC
AH chung

Do đó ΔAHB=ΔAHC

b: Xét ΔABC có

H là trung điểm của BC

HD//AC

Do đó: D là trung điểm của AB

Ta có: ΔHDA vuông tại H

mà HD là đường trung tuyến

nên DA=DH

c: Xét ΔABC có

CD là đường trung tuyến

AH là đường trung tuyến

CD cắt AH tai G

Do đó: G là trọng tâm

=>B,G,E thẳng hàng

30 tháng 4 2019

bạn vào câu hỏi tương tự nha

30 tháng 4 2019

a, xét tam giác AHB và tam giác AHC có : AH chung

góc AHB = góc AHC = 90 do ...

AB = AC do tam giác ABC cân tại A (gt)

=> tam giác AHB = tam giác AHC (ch - cgv)

b, tam giác AHB = tam giác AHC (câu a)

=> góc BAH = góc CAH (đn)

có HD // AC (gt) => góc DHA = góc HAC (slt)

=> góc DHA = góc DAH 

=> tam giác DAH cân tại D (tc)

14 tháng 2 2016

moi hok lop 6

24 tháng 12 2016

đề bài câu d bị sai thì phải

24 tháng 12 2016

câu d đề sai hoàn toàn

Câu 1. Cho tam giác ABC vuông tại A (AB<AC). Tia phân giác góc A cắt BC tại D. Trên cạnh AC lấy điểm M sao cho AM=ABa) Chứng minh: DB=DMb) Gọi E là giao điểm AB và MD. Chứng minh \(\Delta BED=\Delta MCD\)c) Gọi H là trung điểm của EC. Chứng minh ba điểm A,D,H thẳng hàngCâu 2 . Cho \(\Delta ABC\)có AB<AC. Tia phân giác góc ABC cắt AC tại D. Trên cạnh BC lấy điểm E sao cho BA=BEa) Chứng minh: DA=DEb) Tia ED cắt BA tại F....
Đọc tiếp

Câu 1. Cho tam giác ABC vuông tại A (AB<AC). Tia phân giác góc A cắt BC tại D. Trên cạnh AC lấy điểm M sao cho AM=AB

a) Chứng minh: DB=DM

b) Gọi E là giao điểm AB và MD. Chứng minh \(\Delta BED=\Delta MCD\)

c) Gọi H là trung điểm của EC. Chứng minh ba điểm A,D,H thẳng hàng

Câu 2 . Cho \(\Delta ABC\)có AB<AC. Tia phân giác góc ABC cắt AC tại D. Trên cạnh BC lấy điểm E sao cho BA=BE

a) Chứng minh: DA=DE

b) Tia ED cắt BA tại F. Chứng minh \(\Delta DAF=\Delta DEC\)

c) Gọi H là trung diểm của FC. Chứng minh ba điểm B,D,H thẳng hàng

Câu 3. Cho \(\Delta ABC\)cân tại A. Kẻ AH vuông góc với BC (\(H\in BC\))

a) Chứng minh: HB=HC

b) Kẻ \(HD\perp AB\left(D\in AB\right)\)và \(HE\perp AC\left(E\in AC\right)\). Chứng minh \(\Delta HDE\)cân

Câu 4. Cho tam giác ABC vuông tại B, đường phân giác \(AD\left(D\in BC\right)\). Kẻ DE vuông góc với \(AC\left(E\in AC\right)\)

a) Chứng minh: \(\Delta ABD=\Delta AED;\)

b) BE là đường trung trực của đoạn thẳng AD

c) Gọi F là giao điểm của hai đường thẳng AB và ED  Chứng minh BF=EC

3
4 tháng 5 2019

Câu a

Xét tam giác ABD và AMD có

AB = AM từ gt

Góc BAD = MAD vì AD phân giác BAM

AD chung

=> 2 tam guacs bằng nhau

4 tháng 5 2019

Câu b

Ta có: Góc EMD bằng CMD vì góc ABD bằng AMD

Bd = bm vì 2 tam giác ở câu a bằng nhau

Góc BDE bằng MDC đối đỉnh

=> 2 tam giác bằng nhau

23 tháng 12 2018

sửa lại cái đề hộ cái,sao cho ad+ah là sao?

16 tháng 8 2018

a) Xét Δ AHB vàΔ AHC có:

AH chung

AB =AC (vì Δ ABC cân tại A theo gt)

AH ⊥ BC (vì AH là đường cao theo gt)

⇒ Δ vuông AHB= Δ vuông AHC ( cạnh huyền- cạnh góc vuông)

Sửa đề ( đề sai : HD // AC )
b) Ta có : Δ AHB = Δ AHC (câu a)

⇒ ∠BAH = ∠CAH ( 2 góc tương ứng) (1)

Ta lại có: HD // AC (gt )

⇒ ∠DHA = ∠HAC (so le trong) (2)
Từ (1), (2)⇒ ∠BAH =∠ DAH ⇔ AD = DH ( theo tính chất Δ cân) (*)

Có HD // AC ⇒ ∠ACB = ∠DHB ( đồng vị ) (3)
△ABC cân tại A ⇒ ∠ABC = ∠ACB ( tính chất tam giác cân ) (4)
Từ (3) và (4) ⇒ ∠ABC = ∠DHB ⇒ ΔBDH cân tại D
⇒BD = HD (**)

Từ (*) (**) ⇒AD=DH=BD

c) Ta có: Δ ABH = Δ ACH (câu a) ⇔ BH =HC (hai cạnh tương ứng)

⇒ AH là trung tuyến Δ ABC tại A ( 3)

Ta có : DH //AC ⇒ ∠DHB =∠ACB ( vì đồng vị )

mà ΔABC cân tại A(gt) ⇒ ∠ABC= ∠ACB

⇒ ∠DHB =∠DBH ⇒ DB =DH (theo tính chất Δ cân)

mà ta có AD=DH (câu b) ⇒ DA=DB

⇒ CD là trung tuyến Δ ABC tại C (4)

Từ (3), (4) , AC cắt CD tại G ⇒ G là trọng tâm Δ ABC

mà CE =EA ⇒ BE là trung tuyến Δ ABC tại B

⇒ BE qua G ⇒ B,G,E thẳng hàng

19 tháng 8 2018

bạn ơi cảm phiền bạn vẽ hình cho mình luon đc không ạ?