K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 5

a) Do \(\Delta ABC\) cân tại A (gt)

\(\Rightarrow AB=AC\)

Xét hai tam giác vuông: \(\Delta AHB\) và \(\Delta AHC\) có:

\(AB=AC\left(cmt\right)\)

\(AH\) là cạnh chung

\(\Rightarrow\Delta AHB=\Delta AHC\) (cạnh huyền - cạnh góc vuông)

b) \(\Delta ABC\) cân tại A (gt)

\(AH\) là đường cao của \(\Delta ABC\) (gt)

\(\Rightarrow AH\) cũng là đường phân giác, đường trung tuyến của \(\Delta ABC\)

\(\Rightarrow\widehat{BAH}=\widehat{CAH}\)

\(\Rightarrow\widehat{DAH}=\widehat{HAC}\)

Do \(HD\) // \(AC\) (gt)

\(\Rightarrow\widehat{AHD}=\widehat{HAC}\)

Mà \(\widehat{DAH}=\widehat{HAC}\left(cmt\right)\)

\(\Rightarrow\widehat{AHD}=\widehat{DAH}\)

\(\Rightarrow\Delta AHD\) cân tại D

\(\Rightarrow AD=DH\)

c) Do \(\Delta ABC\) cân tại A (gt)

\(\Rightarrow\widehat{ABC}=\widehat{ACB}\)

\(\Rightarrow\widehat{DBH}=\widehat{ACB}\)

Do \(HD\) // \(AC\) (gt)

\(\Rightarrow\widehat{DHB}=\widehat{ACB}\) (đồng vị)

Mà \(\widehat{DBH}=\widehat{ACB}\left(cmt\right)\)

\(\Rightarrow\widehat{DHB}=\widehat{DBH}\)

\(\Rightarrow\Delta BHD\) cân tại D

\(\Rightarrow DH=BD\)

Mà \(DH=AD\left(cmt\right)\)

\(\Rightarrow AD=BD\)

\(\Rightarrow D\) là trung điểm của AB

\(\Rightarrow CD\) là đường trung tuyến của \(\Delta ABC\)

Lại có \(AH\) là đường trung tuyến của \(\Delta ABC\)

\(\Rightarrow G\) là trọng tâm của \(\Delta ABC\)

Do \(E\) là trung điểm của AC (gt)

\(\Rightarrow BE\) là đường trung tuyến của \(\Delta ABC\)

Mà \(G\) là trọng tâm của \(\Delta ABC\) (cmt)

\(\Rightarrow B,G,E\) thẳng hàng

 

\(\Rightarrow AH\) cũng là đường trung tuyến

13 tháng 5 2018

tham khảo ở đây : Câu hỏi của Trần Ngọc Mai Anh - Toán lớp 7 - Học toán với OnlineMath

5 tháng 5

Ê có lời giải ko mn 

24 tháng 4 2018

a) +Xét tg ABH và tg ACH có
AB=AC ( tg ABC cân tại A) 
góc B= góc C (tg ABC cân tại A)
góc AHB= góc AHC=900 (AH là đường cao )
Suy ra: tg ABH= tg ACH
b)+ tg ABH=tg ACH (câu a) => góc BAH= góc CAH (2 góc tương ứng) (1)
+ Ta có: DH // AC (GT)
=> góc CAH= góc DHA ( 2 góc so le trong ) (2)
+ Từ (1) và (2) => góc BAH= góc DHA hay góc DAH= góc DHA 
Suy ra: tg HDA cân tại D => AD=AH
c) +HD// AC => góc DHB= góc ACH ( 2 góc đồng vị ) hay góc DHB= góc ACB
Mà góc ABC= góc ACB (tg ABC cân tại A)
Suy ra: góc DHB= góc ACB => tg DBH cân tại D
=> DB=DH. Mặt khác: AD = DH (câu b)
Suy ra: DB=DA => CD là đường trung tuyến của tg ABC (3)
+ tg ABH= tg ACH (câu a )=> HB=HC (2 cạnh tương ứng ) => AH là đường trung tuyến của tg ABC (4)
+Từ (3) và (4) => G là trọng tâm của tg ABC (CD cắt AH tại G)
Mà BE là đường trung tuyến của tg ABC=> BE đi qua G
Suy ra: B, E, G thẳng hàng
d) mk bt lm nhưng lại k bt cách trình bày thông cảm nha ^^


 

26 tháng 4 2018

câu d tương đương với

CM cvi tam giác ABC > AH+3x 2/3 BE = AH+BE+CD

Tương đương với bài toán chưngs minh độ dài 3 đường trung tuyến của 1 tam giác nhỏ hơn chu vi của tam giác đó

bài toán đấy b có thể tham khảo quyển nâng cao pt tập 2 

11 tháng 9 2018

Bạn tham khảo ở đường link dưới nhé:

Câu hỏi của Trần Ngọc Mai Anh - Toán lớp 7 - Học toán với OnlineMath

15 tháng 5 2018

a)Xet 2 tam giac vuong ahb va tam giac vuong ahc

Co ab=ac(tam giac abc can tai a)

ah canh goc vuong chung

Suy ra tam giac vuong ahb=tam giac vuong ahc(canh huyen-canh goc vuong)

b)

Ta co dh//ac(gt)

suy ra goc dha=goc hac(2 goc so le trong)(1)

mat khac , lai co tam giac vuong ahb=tam giac vuong ahc(cmt)

suy ra goc bah=goc cah(2 goc tuong ung)(2)

tu (1)va(2)=>goc dha=goc dah(=goc hac)

Do do tam giac dha can tai d

Nen ad=dh

c de sai

a: Xét ΔAHB vuông tại H và ΔAHC vuông tạiH có

AB=AC

AH chung

=>ΔAHB=ΔAHC

b: Sửa đề: song song với AC

Xét ΔABC có

H la trung điểm của BC

HD//AC

=>D là trung điểm của AB

ΔAHB vuông tại H

mà HD là trung tuyến

nên HD=AD

c: Xét ΔABC có

CD,AH là trung tuyến

CD cắt AH tại G

=>G là trọng tâm

=>B,G,E thẳng hàng

Mình làm thế này đúng không ạ

a) Xét Δ AHB vàΔ AHC có:

AH chung

AB =AC (vì Δ ABC cân tại A theo gt)

AH ⊥ BC (vì AH là đường cao theo gt)

⇒ Δ vuông AHB= Δ vuông AHC ( cạnh huyền- cạnh góc vuông)

Sửa đề ( đề sai : HD // AC )
b) Ta có : Δ AHB = Δ AHC (câu a)

⇒ ∠BAH = ∠CAH ( 2 góc tương ứng) (1)

Ta lại có: HD // AC (gt )

⇒ ∠DHA = ∠HAC (so le trong) (2)
Từ (1), (2)⇒ ∠BAH =∠ DAH ⇔ AD = DH ( theo tính chất Δ cân) (*)

Có HD // AC ⇒ ∠ACB = ∠DHB ( đồng vị ) (3)
△ABC cân tại A ⇒ ∠ABC = ∠ACB ( tính chất tam giác cân ) (4)
Từ (3) và (4) ⇒ ∠ABC = ∠DHB ⇒ ΔBDH cân tại D
⇒BD = HD (**)

Từ (*) (**) ⇒AD=DH=BD

c) Ta có: Δ ABH = Δ ACH (câu a) ⇔ BH =HC (hai cạnh tương ứng)

⇒ AH là trung tuyến Δ ABC tại A ( 3)

Ta có : DH //AC ⇒ ∠DHB =∠ACB ( vì đồng vị )

mà ΔABC cân tại A(gt) ⇒ ∠ABC= ∠ACB

⇒ ∠DHB =∠DBH ⇒ DB =DH (theo tính chất Δ cân)

mà ta có AD=DH (câu b) ⇒ DA=DB

⇒ CD là trung tuyến Δ ABC tại C (4)

Từ (3), (4) , AC cắt CD tại G ⇒ G là trọng tâm Δ ABC

mà CE =EA ⇒ BE là trung tuyến Δ ABC tại B

⇒ BE qua G ⇒ B,G,E thẳng hàng

a) Xét Δ AHB vàΔ AHC có:

AH chung

AB =AC (vì Δ ABC cân tại A theo gt)

AH ⊥ BC (vì AH là đường cao theo gt)

⇒ Δ vuông AHB= Δ vuông AHC ( cạnh huyền- cạnh góc vuông)

Sửa đề ( đề sai : HD // AC )
b) Ta có : Δ AHB = Δ AHC (câu a)

⇒ ∠BAH = ∠CAH ( 2 góc tương ứng) (1)

Ta lại có: HD // AC (gt )

⇒ ∠DHA = ∠HAC (so le trong) (2)
Từ (1), (2)⇒ ∠BAH =∠ DAH ⇔ AD = DH ( theo tính chất Δ cân) (*)

Có HD // AC ⇒ ∠ACB = ∠DHB ( đồng vị ) (3)
△ABC cân tại A ⇒ ∠ABC = ∠ACB ( tính chất tam giác cân ) (4)
Từ (3) và (4) ⇒ ∠ABC = ∠DHB ⇒ ΔBDH cân tại D
⇒BD = HD (**)

Từ (*) (**) ⇒AD=DH=BD

c) Ta có: Δ ABH = Δ ACH (câu a) ⇔ BH =HC (hai cạnh tương ứng)

⇒ AH là trung tuyến Δ ABC tại A ( 3)

Ta có : DH //AC ⇒ ∠DHB =∠ACB ( vì đồng vị )

mà ΔABC cân tại A(gt) ⇒ ∠ABC= ∠ACB

⇒ ∠DHB =∠DBH ⇒ DB =DH (theo tính chất Δ cân)

mà ta có AD=DH (câu b) ⇒ DA=DB

⇒ CD là trung tuyến Δ ABC tại C (4)

Từ (3), (4) , AC cắt CD tại G ⇒ G là trọng tâm Δ ABC

mà CE =EA ⇒ BE là trung tuyến Δ ABC tại B

⇒ BE qua G ⇒ B,G,E thẳng hàng

a: Xét ΔAHB vuông tại  và ΔAHC vuông tại H có

AB=AC

AH chung

Do đó: ΔAHB=ΔAHC

b: Xét ΔABC có

H là trug điểm của BC

HD//AC

Do đó: D là trung điểm của AB

Ta có ΔAHB vuông tại H

mà HD là đường trung tuyến

nên HD=AD

c: Xét ΔABC có

CD là đường trung tuyến

AH là đường trung tuyến

CD cắt AH tại G

Do đó: G là trọng tâm

=>B,G,E thẳng hàng

30 tháng 4 2018

a) Xét Δ AHB vàΔ AHC có:

AH chung

AB =AC (vì Δ ABC cân taijA theo gt)

AH ⊥ BC (vì AH là đường cao theo gt)

⇒ Δ vuông AHB= Δ vuông AHC ( cạnh huyền- cạnh góc vuông)

b) Ta có : Δ AHB = Δ AHC (câu a)

⇒ ∠BAH = ∠CAH ( 2 góc tương ứng) (1)

Ta lại có: HD // AC (gt )

⇒ ∠DHA = ∠HAC (so le trong) (2)

Từ (1), (2)⇒ ∠BAH =∠ DAH ⇔ AD = DH ( theo tính chất Δ cân)

c) Ta có: Δ ABH = Δ ACH (câu a) ⇔ BH =HC (hai cạnh tương ứng)

⇒ AH là trung tuyến Δ ABC tại A ( 3)

Ta có : DH //AC ⇒ ∠DHB =∠ACB ( vì đồng vị )

mà ΔABC cân tại A(gt) ⇒ ∠ABC= ∠ACB

⇒ ∠DHB =∠DBH ⇒ DB =DH (theo tính chất Δ cân)

mà ta có AD=DH (câu b) ⇒ DA=DB

⇒ CD là trung tuyến Δ ABC tại C (4)

Từ (3), (4) , AC cắt CD tại G ⇒ G là trọng tâm Δ ABC

mà CE =EA ⇒ BE là trung tuyến Δ ABC tại B

⇒ BE qua G ⇒ B,G,E thẳng hàng

d) Mk sẽ nghĩ câu d sau nhé!!!

Tham khảo

a) Xét 2 tam giác vuông ΔAHB và ΔAHC có:

AH chung

AB = AC (GT)

⇒ Δ AHB = ΔAHC (cạnh huyền - cạnh góc vuông)

b) Ta có : Δ AHB = Δ AHC (câu a)

⇒ ˆBAH=ˆCAHBAH^=CAH^ ( 2 góc tương ứng) (1)

Ta lại có: HD // AC ( GT )

⇒ ˆDHA=ˆCAHDHA^=CAH^ (2 góc so le trong) (2)

Từ (1) và (2) => ˆDHA=ˆBAHDHA^=BAH^

Hay: ˆDHA=ˆDAHDHA^=DAH^

=> ΔADH cân tại D

=> AD = DH

c) Ta có: ΔABH = ΔACH (câu a)

⇔ BH =HC (hai cạnh tương ứng)

⇒ AH là trung tuyến ΔABC tại A ( 3)

Ta có : DH //AC ⇒ ∠DHB = ∠ACB ( 2 góc đồng vị )

Mà ΔABC cân tại A (GT)

⇒ ∠ABC= ∠ACB

⇒ ∠DHB = ∠DBH

=> ΔDHB cân tại D

⇒ DB =DH

Lại có AD = DH (câu b) ⇒ DA=DB

⇒ CD là trung tuyến ΔABC (4)

Từ (3), (4) ta có: AC cắt CD tại G ⇒ G là trọng tâm Δ ABC

Mà CE =EA ⇒ BE là trung tuyến Δ ABC tại B

⇒ BE qua G ⇒ B,G,E thẳng hàng

28 tháng 4 2022

mà bn bt vẽ hình này ko ạ