Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài làm
a) Ta có tia phân giác của góc \(\widehat{ABC}\)
=> \(\widehat{B}_1=\widehat{B_2}\)
Ta có tia phân giác của góc \(\widehat{ACB}\)
=> \(\widehat{C}_1=\widehat{C_2}\)
Mà \(\widehat{ABC}=\widehat{ACB}\)( Tam giác ABC cân tại A )
=>\(\widehat{B}_1=\widehat{B_2}=\widehat{C_1}=\widehat{C_2}\)
Xét tam giác ACN và tam giác ABM có:
\(\widehat{B}_1=\widehat{C_1}\)( Chứng minh trên )
AB = AC ( tam giác ABC cân tại A )
\(\widehat{BAC}\)là góc chung
=> Tam giác ACN = tam giác ABM ( g.c.g ) ( đpcm )
b) ~ Mik nghĩ đề bài bn sai ở chỗ câu b. pk là A là trung điểm của DE mới phải ~
Vì \(\widehat{B}_1=\widehat{C_1}\)( Chứng minh trên )
Ta có: \(\widehat{B}_1\)đối diện với cạnh AD ( 1 )
Vì \(\widehat{C_1}\)đối diện với cạnh EA ( 2 )
Từ ( 1 ) và ( 2 ) => AD = AE
=> A là trung điểm của DE ( đpcm )
# Hok_tốt #
a)Xét ΔABM vuông và ΔACM vuông có:
AM chung
AB=AC
=> ΔABM = ΔACM
=> BAM = CAM ( 2 góc t.ư)
=> AM là p/g của góc BAC
a, xét tam giác BDM và tam giác CEM có:
BM=CM(gt)
\(\widehat{BMD}\)=\(\widehat{CME}\)(vì đối đỉnh)
\(\Rightarrow\)tam giác BDM=tam giác CEM( CH-GN)
b, xét tam giác BEM và tam giác CDM có
BM=CM
\(\widehat{CMD}\)=\(\widehat{BME}\)(đối đỉnh)
MD=ME(theo câu a)
\(\Rightarrow\)\(\Delta\)BEM=\(\Delta\)CDM(c.g.c)
\(\Rightarrow\)\(\widehat{MCD}\)=\(\widehat{MBE}\) mà 2 góc này ở vị trí so le trong nên BE//CD
c) Xét tam giác ABM có: MH vuông AB, BD vuông AM
Mà BD cắt MH tại I
=> I là trực tâm
Gọi J là giao của AI và BC khi đó:
AJ vuông BC
Xét 2 tam giác vuông AJM vàCEM có:
AM=MC(=1/2BC)( vì tam giác ABC vuông thì trung tuyến bằng 1/2 cạnh huyền)
góc IMA=góc EMC
=> Tam giác ẠM=tam giác CEM
=> \(\widehat{JAM}=\widehat{ECM}\) mặt khác MA=MC=> tam giác MAC cân => \(\widehat{MAN}=\widehat{MCN}\)
từ đó suy ra \(\widehat{IAN}=\widehat{ECN}\)
Gọi K là giao điểm của AI và CE
=> tam giác KAC cân
=> KA=KC
=> K nằm trên đường trung trực AC
Mặc khác MN là đường cao của tam giác cân MAC
=> MN là đường trung trực của AC
=> MN qua K
vậy MN, AI và CE đồng quy tại K
=>