K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
11 tháng 3 2023

a.

\(\overrightarrow{BC}=\left(1;3\right)\Rightarrow\) đường thẳng BC nhận (3;-1) là 1 vtpt

Phương trình tổng quát BC qua B(-1;0) có dạng:

\(3\left(x+1\right)-1\left(y-0\right)=0\Leftrightarrow3x-y+3=0\)

Pt AB và AC em tự viết tương tự

b.

Do M là trung điểm BC, theo công thức trung điểm \(\Rightarrow M\left(-\dfrac{1}{2};\dfrac{3}{2}\right)\)

\(\Rightarrow\overrightarrow{AM}=\left(-\dfrac{5}{2};\dfrac{1}{2}\right)\Rightarrow\) đường thẳng AM nhận (1;5) là 1 vtpt

Phương trình AM qua A(2;1) có dạng:

\(1\left(x-2\right)+5\left(y-1\right)=0\Leftrightarrow x+5y-7=0\)

c.

Do AH vuông góc BC nên AH nhận (1;3) là 1 vtpt

Phương trình AH qua A có dạng:

\(1\left(x-2\right)+3\left(y-1\right)=0\Leftrightarrow x+3y-5=0\)

d.

Gọi I là trung điểm AB \(\Rightarrow I\left(\dfrac{1}{2};\dfrac{1}{2}\right)\)

\(\overrightarrow{BA}=\left(3;1\right)\)

Do trung trực AB vuông góc và đi qua trung điểm AB nên đi qua I và nhận (3;1) là 1 vtpt

Phương trình:

\(3\left(x-\dfrac{1}{2}\right)+1\left(y-\dfrac{1}{2}\right)=0\Leftrightarrow3x+y-2=0\)

28 tháng 4 2020
https://i.imgur.com/xrRz1PJ.jpg
NV
24 tháng 4 2020

\(\overrightarrow{AB}=\left(2;3\right)\Rightarrow\) đường thẳng AB nhận \(\left(3;-2\right)\) là 1 vtpt

Phương trình AB:

\(3\left(x-2\right)-2\left(y+1\right)=0\Leftrightarrow3x-2y-8=0\)

b/ \(CH\perp AB\Rightarrow\) đường thẳng CH nhận \(\left(2;3\right)\) là 1 vtpt

Phương trình CH:

\(2\left(x+2\right)+3\left(y-2\right)=0\Leftrightarrow2x+3y-2=0\)

c/ \(\overrightarrow{BC}=\left(-6;0\right)=-6\left(1;0\right)\) ,đường thẳng d song song BC nên nhận \(\left(0;1\right)\) là 1 vtpt

Phương trình d:

\(0\left(x-2\right)+1\left(y+1\right)=0\Leftrightarrow y+1=0\)

d/ Gọi \(\overrightarrow{AC}=\left(-4;3\right)\Rightarrow\) phương trình AC có dạng:

\(3\left(x-2\right)+4\left(y+1\right)=0\Leftrightarrow3x+4y-2=0\)

Gọi \(M\left(x;y\right)\) là điểm thuộc phân giác góc A \(\Rightarrow d\left(M;AB\right)=d\left(M;AC\right)\)

\(\Leftrightarrow\frac{\left|3x-2y-8\right|}{\sqrt{3^2+2^2}}=\frac{\left|3x+4y-2\right|}{\sqrt{3^2+4^2}}\Leftrightarrow\left|15x-10y-40\right|=\left|3\sqrt{13}x+4\sqrt{13}y-2\sqrt{13}\right|\)

\(\Leftrightarrow\left[{}\begin{matrix}15x-10y-40=3\sqrt{13}x+4\sqrt{13}y-2\sqrt{13}\\15x-10y-40=-3\sqrt{13}x-4\sqrt{13}y+2\sqrt{13}\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}\left(15-3\sqrt{13}\right)x-\left(10+4\sqrt{13}\right)y-40+2\sqrt{13}=0\\\left(15+3\sqrt{13}\right)x-\left(10-4\sqrt{13}\right)y-40-2\sqrt{13}=0\end{matrix}\right.\)

Thay tọa độ B, C vào 2 pt thì chỉ pt bên dưới cho kết quả trái dấu, vậy pt đường phân giác trong góc A là:

\(\left(15+3\sqrt{13}\right)x-\left(10-4\sqrt{13}\right)y-40-2\sqrt{13}=0\)

5 tháng 5 2021

undefined

NV
18 tháng 4 2020

a/ Trục Ox nhận \(\left(1;0\right)\) là 1 vtcp

Gọi đường thẳng cần tìm là d', do d' vuông góc \(Ox\Rightarrow\) d' nhận \(\left(1;0\right)\) là 1 vtpt và \(\left(0;1\right)\) là 1 vtcp

Phương trình tham số: \(\left\{{}\begin{matrix}x=-1\\y=2+t\end{matrix}\right.\)

Không tồn tại ptct của d'

Pt tổng quát: \(1\left(x+1\right)+0\left(y-2\right)=0\Leftrightarrow x+1=0\)

b/ Mình viết pt một cạnh, 1 đường cao và 1 đường trung tuyến, phần còn lại tương tự bạn tự làm:

\(\overrightarrow{AB}=\left(2;-5\right)\Rightarrow\) đường thẳng AB nhận \(\left(5;2\right)\) là 1 vtpt

Phương trình AB:

\(5\left(x-1\right)+2\left(y-4\right)=0\Leftrightarrow5x+2y-13=0\)

Gọi M là trung điểm BC \(\Rightarrow M\left(\frac{9}{2};\frac{1}{2}\right)\Rightarrow\overrightarrow{AM}=\left(\frac{7}{2};-\frac{7}{2}\right)=\frac{7}{2}\left(1;-1\right)\)

\(\Rightarrow\) Đường thẳng AM nhận \(\left(1;1\right)\) là 1 vtpt

Phương trình trung tuyến AM:

\(1\left(x-1\right)+1\left(y-4\right)=0\Leftrightarrow x+y-5=0\)

Gọi CH là đường cao tương ứng với AB, do CH vuông góc AB nên đường thẳng CH nhận \(\left(2;-5\right)\) là 1 vtpt

Phương trình CH:

\(2\left(x-6\right)-5\left(y-2\right)=0\Leftrightarrow2x-5y-2=0\)

19 tháng 4 2020

Cảm ơn bạn nhé❤️

14 tháng 3 2020

a, AB: qua A(1;-2), 1 VTCP \(\overrightarrow{AB}=\left(-1;3\right)\) => VTPT: \(\left(3;1\right)\)

\(\Rightarrow AB:3\left(x-1\right)+y+2=0\Leftrightarrow3x+y-1=0\)

AC : qua A(1;-2), 1 VTCP \(\overrightarrow{AC}=\left(-3;2\right)\) => VTPT: \(\left(2;3\right)\)

\(\Rightarrow AC:2\left(x-1\right)+3\left(y+2\right)=0\)

\(\Leftrightarrow2x+3y+4=0\)

BC: qua B(0;1) , 1 VTCP \(\overrightarrow{BC}=\left(-2;-1\right)\) => VTPT: \(\left(-1;2\right)\)

\(\Rightarrow BC:-x+2y-2=0\)

b, Gọi I là trung điểm AC => \(I\left(-\frac{1}{2};-1\right)\)

Pt đg trung tuyến kẻ từ B: qua \(B\left(0;1\right)\) ; 1 VPCP \(\overrightarrow{BI}=\left(-\frac{1}{2};2\right)\)

=> VTPT: \(\left(2;\frac{1}{2}\right)\)

=> BI : \(2x+2\left(y-1\right)=0\Leftrightarrow x+y-1=0\)

c, AH: qua A(1;-2) , 1 VTPT \(\overrightarrow{BC}=\left(-2;-1\right)\)

\(\Rightarrow AH:-2\left(x-1\right)-\left(y+2\right)=0\)

\(\Leftrightarrow-2x+2-y-2=0\)

\(\Leftrightarrow-2x-y=0\)

25 tháng 4 2020

cho hỏi sao câu c M lại đc (1;-1) v ạ

NV
25 tháng 4 2020

\(x_M=\frac{x_B+x_C}{2}=\frac{-3+5}{2}=1\)

\(y_M=\frac{y_B+y_C}{2}=\frac{-2+0}{2}=-1\)

Duy Trần

13 tháng 3 2021

Đường thẳng AC vuông góc với BH và đi qua A(4;1) có phương trình \(2x-3y-5=0\)

Đường thẳng AB vuông góc với CM và đi qua A(4;1) có phương trình \(x+y-5=0\)

Điểm B có tọa độ là nghiệm của hệ \(\left\{{}\begin{matrix}3x+2y+1=0\\x+y-5=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-11\\y=16\end{matrix}\right.\Rightarrow B=\left(-11;16\right)\)

Trực tâm K của tam giác ABC có tọa độ là nghiệm của hệ \(\left\{{}\begin{matrix}3x+2y+1=0\\-x+y=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-\dfrac{1}{5}\\y=-\dfrac{1}{5}\end{matrix}\right.\Rightarrow K=\left(-\dfrac{1}{5};-\dfrac{1}{5}\right)\)

\(\Rightarrow AK\) có phương trình: \(2x-7y-1=0\)

\(\Rightarrow BC\) vuông góc với AK và đi qua B có phương trình \(7x+2y+45=0\)