Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1: (a-1)(a-3)(a-4)(a-6)+9
=(a^2-7a+6)(a^2-7a+12)+9
=(a^2-7a)^2+18(a^2-7a)+81
=(a^2-7a+9)^2>=0
b: \(A=\dfrac{a^4-4a^3+a^2+4a^3-16a+4+16a-3}{a^2}=\dfrac{16a-3}{a^2}\)
a^2-4a+1=0
=>a=2+căn 3 hoặc a=2-căn 3
=>A=11-4căn 3 hoặc a=11+4căn 3
Lời giải:
Ta có:
$a(a-b)+b(b-c)+c(c-a)=a^2+b^2+c^2-ab-bc-ac$
$=\frac{3}{2}(a^2+b^2+c^2)-[\frac{1}{2}(a^2+b^2+c^2)+ab+bc+ac]$
$=\frac{3}{2}(a^2+b^2+c^2)-\frac{1}{2}(a^2+b^2+c^2+2ab+2bc+2ac)$
$=\frac{3}{2}(a^2+b^2+c^2)-\frac{1}{2}(a+b+c)^2$
$=\frac{3}{2}(a^2+b^2+c^2)$
$\Rightarrow P=\frac{a^2+b^2+c^2}{\frac{3}{2}(a^2+b^2+c^2)}=\frac{2}{3}$
cho a^3 +b^3+c^3=3abc và a+b+c khác 0 tính giá trị của biểu thức M=a^2020+b^2020+c^2020/(a+b+c)^2020
Ta có: \(a^3+b^3+c^3=3abc\)
\(\Leftrightarrow a^3+b^3+c^3-3abc=0\)
\(\Leftrightarrow\left(a+b\right)^3+c^3-3ab\left(a+b\right)-3abc=0\)
\(\Leftrightarrow\left(a+b+c\right)\left(a^2+2ab+b^2-ac-bc+c^2\right)-3ab\left(a+b+c\right)=0\)
\(\Leftrightarrow\left(a+b+c\right)\left(a^2+b^2+c^2-ab-ac-bc\right)=0\)
mà \(a+b+c\ne0\)
nên \(a^2+b^2+c^2-ab-ac-bc=0\)
\(\Leftrightarrow2a^2+2b^2+2c^2-2ab-2ac-2bc=0\)
\(\Leftrightarrow\left(a^2-2ab+b^2\right)+\left(b^2-2bc+c^2\right)+\left(c^2-2ac+a^2\right)=0\)
\(\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}a-b=0\\b-c=0\\c-a=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=b\\b=c\\c=a\end{matrix}\right.\Leftrightarrow a=b=c\)
Ta có: \(M=\dfrac{a^{2020}+b^{2020}+c^{2020}}{\left(a+b+c\right)^{2020}}\)
\(=\dfrac{a^{2020}+a^{2020}+a^{2020}}{\left(a+a+a\right)^{2020}}=\dfrac{3\cdot a^{2020}}{9\cdot a^{2020}}=\dfrac{1}{3}\)
Đoạn cuối em bị nhầm rồi kìa. \(\frac{a^{2020}+b^{2020}+c^{2020}}{(a+b+c)^{2020}}=\frac{3a^{2020}}{(3a)^{2020}}=\frac{3}{3^{2020}}=\frac{1}{3^{2019}}\)
cho a^3 +b^3+c^3=3abc và a+b+c khác 0 tính giá trị của biểu thức M=a^2020+b^2020+c^2020/(a+b+c)^2020
Ta có : a3 + b3 + c3 = 3abc
=> (a + b)(a2 - ab + b2) + c3 - 3abc = 0
=> (a + b)3 - 3ab(a + b) + c3 - 3abc = 0
=> [(a + b)3 + c3] - [(3ab(a + b) + 3abc] = 0
=> (a + b + c)(a2 + b2 + 2ab - ac - bc + c2) - 3ab(a + b + c) = 0
=> (a + b + c)(a2 + b2 + c2 - ab - ac - bc) = 0
=> a2 + b2 + c2 - ab- ac - bc = 0
=> 2(a2 + b2 + c2 - ab- ac - bc) = 0
=> 2a2 + 2b2 + 2c2 - 2ab - 2ac - 2bc = 0
=> (a2 - 2ab + b2) + (b2 - 2bc + c2) + (a2 - 2ac + c2) = 0
=> (a - b)2 + (b - c)2 + (a - c)2 = 0
=> \(\hept{\begin{cases}a-b=0\\b-c=0\\c-a=0\end{cases}}\Rightarrow a=b=c\)
Khi đó M = \(\frac{a^{2020}+b^{2020}+c^{2020}}{\left(a+b+c\right)^{2020}}=\frac{3.c^{2020}}{\left(3c\right)^{2020}}+\frac{3c^{2020}}{3^{2020}.c^{2020}}=\frac{1}{3^{2019}}\)
Lời giải:
$\frac{a+b}{c}=\frac{b+c}{a}=\frac{c+a}{b}$
$\Rightarrow \frac{a+b}{c}+1=\frac{b+c}{a}+1=\frac{c+a}{b}+1$
$\Rightarrow \frac{a+b+c}{c}=\frac{b+c+a}{a}=\frac{a+b+c}{b}$
Do $a+b+c\neq 0$ nên $c=a=b$
Khi đó:
$A=\frac{a}{b+c}+\frac{a+b}{c}+\frac{b}{c+a}=\frac{a}{a+a}+\frac{a+a}{a}+\frac{a}{a+a}=\frac{1}{2}+2+\frac{1}{2}=3$